论文速递 | 实例分割算法BlendMask,实时又state-of-the-art

BlendMask通过更合理的blender模块融合top-level和low-level的语义信息来提取更准确的实例分割特征,该模型效果达到state-of-the-art,但结构十分精简,推理速度也不慢,精度最高能到41.3AP,实时版本BlendMask-RT性能和速度分别为34.2mAP和25FPS,并且论文的优化方法很有学习的价值,值得一读

论文:BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

Introduction


  密集实例分割模型早期主要有两种,top-down apporach和bottom-up apporach

top-down apporach

  top-down模型先通过一些方法获取box区域,然后对区域内的像素进行mask提取,这种模型一般有以下几个问题:

  • 特征和mask之间的局部一致性会丢失,论文讨论的是Deep-Mask,用fc来提出mask
  • 冗余的特征提取,不同的bbox会重新提取一次mask
  • 由于使用了缩小特征图的卷积,位置信息会损失

bottom-up apporach

  bottom-up模型先对整图进行逐像素预测(per-pixel prediction),每个像素生成一个特征向量,然后通过一些方法来对像素进行分组。由于进行的是逐像素级预测且步长很小,局部一致性和位置信息可以很好的保存,但是依然存在以下几个问题:

  • 严重依赖逐像素预测的质量,容易导致非最优的分割
  • 由于mask在低维提取,对于复杂场景(类别多)的分割能力有限
  • 需要复杂的后处理方法

hybridizing apporach

  考虑到上面的问题,论文综合了top-down和bottom-up的策略,利用instance-level信息(bbox)对per-pixel prediction进行裁剪和加权输出。虽然FCIS和YOLACT已有类似的思想,但论文认为他们都没有很好的处理top-level和bottom-level的特征,高维特征包含整体的instance信息,而低维特征的则保留了更好的位置信息,论文的重点在于研究如何合并高低维特征,主要贡献有以下几点:

  • 提出了proposal-based的instance mask合并方法,blender,在COCO上对比YOLACT和FCIS的合并方法分别提升了1.9和1.3mAP
  • 基于FCOS提出简洁的算法网络BlendMask
  • BlendMask的推理时间不会像二阶检测器一样随着预测数量的增加而增加
  • BlendMask的准确率和速度比Mask R-CNN要好,且mask mAP比最好的全卷积实例分割网络Tensor-Mask要高1.1
  • 由于bottom模块能同时分割多种物体,BlendMask可直接用于全景分割
  • Mask R-CNN的mask输出固定为\(28\times 28\),BlendMask的mask输出像素可以很大,且不受FPN的限制
  • BlendMask通用且灵活,只要一些小修改,就可以用于其它instance-level识别任务中,例如关键点检测

Our methods


Overall pipeline

  BlendMask包含检测网络和mask分支,mask分支包含3个部分,bottom module用于预测score maps,top layer用于预测实例的attentions,blender module用于整合分数以及attentions,整体的架构如图2所示

  • Bottom module

  bottom module预测的score maps在文中称为基底(base)\(B\)\(B\)的大小为\(N\times K\times \frac{H}{s}\times \frac{W}{s}\),其中N为batch size,K为基底的数量,\(H\times W\)是输入的大小,而\(s\)则是score maps的输出步长。

DeepLab V3+

  论文采用DeepLab V3+的decoder,该decoder包含两个输入,一个低层特征和一个高层特征,对高层特征进行upsample后与低层特征融合输出。这里使用别的结构也是可以的,而bottom module的输入可以是backbone的feature,也可以是类似YOLACT或Panoptic FPN的特征金字塔

  • Top Layer

  在每一个detection tower后接了一层卷积层用来预测top-level attentions\(A\)。 在YOLACT中,每一层金字塔(\(H_l\times W_l\))输出的\(A\)\(N\times K\times H_l\times W_l\),即对应基底每个channel的整体的权重值。而论文输出的\(A\)\(N\times (K\cdot M\cdot M)\times H_l\times W_l\)\(M\times M\)是attention的分辨率,即对应基底每个channel的像素点的权重值,粒度更细,是element-wise的操作(后面会讲到)。
  由于attentions是3D结构(\(K\cdot M\cdot M\)),因此可以学习到一些实例级别的信息,例如对象大致的形状和姿态。\(M\)的值是比较小的,只做粗略的预测,一般最大为14,使用output channel为(\(K\cdot M\cdot M\))的卷积来实现。在送到一下个模块之前,先使用FCOS post-process方法来选择top D个bbox \(P=\{p_d \in \mathbb{R}_{\ge0}^4 |d=1...D\}\)和对应的attentions \(A=\{a_d \in \mathbb{R}^{K\times M\times M} |d=1...D\}\),具体的选择方法是选择分类置信度\(\ge\)阈值的top D个bbox,阈值一般为0.05

  • Blender module

  Blender module是BlendMask的关键部分,根据attentions对位置敏感的基底进行合并输出

Blender module

  blender模块的输入为bottom-level的基底\(B\)以及选择的top-level attentions\(A\)和bbox\(P\)

  首先,使用Mask R-CNN的ROIPooler来截取每个bbox\(p_d\)对应的基底区域,并resize成固定\(R\times R\)大小的特征图\(r_d\)。具体地,使用sampleing ratio=1的RoIAlign,每个bin只采样1个点,Mask R-CNN每个bin采样4个点。在训练的时候,直接使用gt bbox作为proposals,而在推理时,则直接用FCOS的检测结果

  attention大小\(M\)是比\(R\)小的,因此需要对\(a_d\)进行插值,从\(M\times M\)变为\(R\times R\)\(R=\{r_d|d=1...D\}\)

  接着对\(a_d^{'}\)的K维attention分别进行softmax归一化,产生一组score map \(s_d\)

  然后对每个region\(R\)\(r_d\)和对应的score map\(S\)\(s_d\)进行element-wise product,最后将K个结果进行相加得到\(m_d\)

  图1对blend module的操作进行了可视化,可以看到attenttions和基底的特征以及融合的过程,可以说十分生动形象了

Configurations and baselines

  BlendMask的超参数如下:

  • \(R\),bottom-level RoI的分辨率
  • \(M\),top-level预测的分辨率
  • \(K\),基底的数量(channel)
  • bottom模块的输入可以是骨干网络或FPN的feature
  • 基底的采样方法可以是最近邻或双线性池化
  • top-level attentions的插值方法可以是最近邻或双线性采样

  论文用缩写\(R\_K\_M\)来表示模型,使用骨干特征C3和C5作为bottom模块的输入,top-level attention使用最近邻插值,bottom level使用双线性插值,与RoIAlign一致

Semantics encoded in learned bases and attentions

  基底和attentions的可视化结果如图3所示,论文认为BlendMask能提取两种位置信息:

  • 像素是否在对象上(semantic masks)
  • 像素是否在对象的具体部位上(position-sensitive features),比如左上角,右下角

  红蓝两个基底分别检测了目标的右上和左下部分点,黄色基底则检测了大概率在目标上的点(semantic mask),而绿色基底则激活了物体的边界,position-sensitive features有助于进行实例级别的分割,而semantic mask则可以对postion-sensitive进行补充,让最后的结果更加顺滑。由于学习到了更多准确的特征,BlendMask使用了比YOLACT和FCIS少很多的基底纬度(4 vs. 32 vs. 49)

Experiment


消融实验

  • Merging methods: Blender vs. YOLACT vs. FCIS

  论文将blender改造成其它两个算法的merge模型进行实验,从Table1可以看出,Blender的merge方法要比其它两个算法效果好

  • Top and bottom resolutions

  从Table2可以看出,随着resolution的增加,精度越来越高,为了保持性价比,R/M的比例保持大于4,总体而言,推理的时间是比较稳定的

  • Number of bases

  从Table3可以看出,K=4是最优

  • Bottom feature locations: backbone vs. FPN

  从图4可以看出,使用FPN特征作为bottom模块的输入,不仅效率提升了,推理时间也加快了

  • Interpolation method: nearest vs. bilinear

  在对top-level attentions进行插值时,双线性比最近邻高0.2AP

  而对bottom-level score maps进行插值时双线性比最近邻高2AP

  • Other improvements

  论文也尝试了其它提升网络效果的实验,虽然这些trick对网络有一定的提升,但是没有加入到最终的网络中

Main result

  • Quantitative results

  从结果来看,BlendMask在效果和速度上都优于目前的实例分割算法,但是有一点,在R-50不使用multi-scale的情况下,BlendMask的效果要比Mask R-CNN差

  • Real-time setting

  为了跟YOLACT对比,论文改造了一个紧凑版的BlendMask-RT: 1) 减少prediction head的卷积数 2) 合并classification tower和box tower 3) 使用Proto-FPN并去掉P7。从结果来看,BlendMask-RT比YOLACT快7ms且高3.3AP

  • Qualitative results

  图4展示了可视化的结果,可以看到BlendMask的效果比Mask R-CNN要好,因为BlendMask的mask分辨为56而Mask R-CNN的只有28,另外YOLACT是难以区分相邻实例的,而BlendMask则没有这个问题

Discussions


  • Comparison with Mask R-CNN

  BlendMask的结构与Mask R-CNN类似,通过去掉position-sensitive feature map以及重复的mask特征提取来进行加速,并通过attentions指导的blender来替换原来复杂的全局特征计算
  BlendMask的另一个优点是产生了高质量的mask,而分辨率输出是不受top-level采样限制。对于Mask R-CNN增大分辨率,会增加head的计算时间,而且需要增加head的深度来提取准确的mask特征 。另外Mask R-CNN的推理时间会随着bbox的数量增加而增加,这对实时计算是不友好的
  最后,blender模块是十分灵活的,因为top-level的实例attention预测只有一个卷积层,对于加到其它检测算法中几乎是无花费的

  • Panoptic Segmentation

  BlendMask可以通过使用Panoptic-FPN的语义分割分支来进行全景分割任务,从结果来看,BlendMask效果更好

总结


  BlendMask通过更合理的blender模块融合top-level和low-level的语义信息来提取更准确的实例分割特征,该模型综合各种优秀算法的结构,例如YOLACT,FOCS,Mask R-CNN,比较tricky,但是很有参考的价值。BlendMask模型十分精简,效果达到state-of-the-art,推理速度也不慢,精度最高能到41.3AP,实时版本BlendMask-RT性能和速度分别为34.2mAP和25FPS,并且论文实验做得很充足,值得一读

参考内容

如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注个人微信公众号【晓飞的算法工程笔记】

work-life balance.

posted @ 2020-03-26 16:48  晓飞的算法工程笔记  阅读(942)  评论(0编辑  收藏  举报