Max Sum Plus Plus
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
OutputOutput the maximal summation described above in one line.
Sample Input1 3 1 2 3 2 6 -1 4 -2 3 -2 3Sample Output
6 8
和max sum的算法类似,加入一个维度,用来表示分成几组
第m组的第n个数计算方式为max(m组n-1,m-1组n前的最大值)+n的值
因为只和前一组有关,所以使用滚动数组
#define _CRT_SECURE_NO_WARNINGS #include<cstdlib> #include<iostream> using namespace std; #define x 1000000 int max(int a, int b) { return a > b ? a : b; } int main() { int m, n; while (~scanf("%d%d", &m, &n)) { int a[x + 1]; int dp[x + 1] = { 0 }; int mx[x + 1] = { 0 }; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } int t = -99999; for (int i = 1; i <= m; i++) { t = -99999999; for (int j = i; j <= n; j++) { dp[j] = max(dp[j - 1], mx[j - 1]) + a[j]; mx[j - 1] = t; t = max(t, dp[j]); } } printf("%d\n", t); } return 0; }
一天不做题,浑身难受

浙公网安备 33010602011771号