HDU-4549

HDU-4549

思路

列出数列前几项,发现\(a\)\(b\)的次数符合斐波那契数列。

问题就转化为了求出\(1e9\)项斐波那契数列,可以使用矩阵快速幂加速。但是求出的第\(1e9\)个斐波那契数非常大,使用快速幂会超时。

问题就转化为了如何减少快速幂的次数。

于是想到了 欧拉降幂 或 费马小定理。

费马小定理

\(a,m \in \mathbb{Z}\)\(m\)是质数且\(a \not\equiv 0 \pmod{m}\),有

\[a^{m-1} \equiv 1 \pmod{m} \]

推广:

\[a^{n}= a^{n \bmod (m - 1)} \pmod{m} \]

欧拉定理

\(a,m \in \mathbb{Z}\),且\(\gcd(a,m) = 1\)时,有:

\[a^{\varphi(m)} \equiv 1 \pmod{m} \]

所以有:

\[a^{n} = a^{n \bmod \varphi(m)} \equiv 1 \pmod{m} \]

拓展欧拉定理

\(a, m \in \mathbb{Z}\)时,有:

\[a^n \equiv \begin{cases} a^n & ,n < \varphi(m) \\ a^{\left[n \bmod \varphi(m)\right] + \varphi(m)} & , n \geqslant \varphi(m) \end{cases} \pmod{m} \]

上面三个定理的证明:这里

Code

#include <bits/stdc++.h>
using namespace std;
#define _u_u_ ios::sync_with_stdio(false), cin.tie(nullptr)
#define cf int _o_o_;cin>>_o_o_;for (int Case = 1; Case <= _o_o_;Case++)
#define SZ(x) (int)(x.size())
inline void _A_A_();
signed main() {_A_A_();return 0;}

using ll = long long;
#define int long long
const int mod = 1e9 + 7;
const int t_mod = 1e9+6;
const int maxn = 2e5 + 10;
const int N = 2, M = 5010;
const int inf = 0x3f3f3f3f;

int a, b, n;

struct mat {
    int m[N][N];
    mat() {
        memset(m,0, sizeof m);
    }
};

mat operator * (const mat & a, const mat & b) {
    mat c;
    for (int i = 0;i < N;i++) {
        for (int j = 0;j < N;j++) {
            for (int k= 0;k < N;k++) {
                c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j]) % (t_mod);
            }
        }
    }
    return c;
}

mat qpow(mat a, int b) {
    mat c;
    for (int i= 0;i < N;i++) c.m[i][i] = 1;
    while (b) {
        if (b & 1) {
            c = c * a;
        }
        a = a * a;
        b >>=1;
    }
    return c;
}

int qpow(int a, int b) {
    int res = 1;
    while (b) {
        if (b & 1) {
            res = (res * a) % mod;
        }
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

inline void _A_A_() {
    #ifdef LOCAL
    freopen("in.in", "r", stdin);
    #endif
    _u_u_;
    while (cin >> a >> b >> n) {
        if (n == 0) {
            cout << a << "\n";
            continue;
        }
        if (n == 1) {
            cout << b << "\n";
            continue;
        }
        mat s;
        s.m[0][0] = s.m[0][1] = s.m[1][0] = 1;
        s = qpow(s, n - 2);
        int an_plus_1 = (s.m[0][0] + s.m[1][0]) % t_mod;
        int an = (s.m[1][1] + s.m[0][1]) % t_mod;
        cout << (qpow(a, an) * qpow(b, an_plus_1)) % mod << "\n";
    }
}
posted @ 2022-11-15 23:03  Uzhia  阅读(30)  评论(0)    收藏  举报