import numpy as np
import torch
# from torch.utils.tensorboard import SummaryWriter
import torch.nn as nn
import argparse
from tqdm import tqdm
from config import device, print_freq, vocab_size, sos_id, eos_id
from data_gen import AiShellDataset, pad_collate
from transformer.decoder import Decoder
from transformer.encoder import Encoder
from transformer.loss import cal_performance
from transformer.optimizer import TransformerOptimizer
from transformer.transformer import Transformer
from utils import parse_args, save_checkpoint, AverageMeter, get_logger
def train_net(args):
torch.manual_seed(7) #定义随机种子
np.random.seed(7)
checkpoint = args.checkpoint
start_epoch = 0
best_loss = float('inf')
# writer = SummaryWriter()
epochs_since_improvement = 0
# Initialize / load checkpoint
if checkpoint is None: #判断模型是否被中断过
# model
encoder = Encoder(args.d_input * args.LFR_m, args.n_layers_enc, args.n_head,
args.d_k, args.d_v, args.d_model, args.d_inner,
dropout=args.dropout, pe_maxlen=args.pe_maxlen)
decoder = Decoder(sos_id, eos_id, vocab_size,
args.d_word_vec, args.n_layers_dec, args.n_head,
args.d_k, args.d_v, args.d_model, args.d_inner,
dropout=args.dropout,
tgt_emb_prj_weight_sharing=args.tgt_emb_prj_weight_sharing,
pe_maxlen=args.pe_maxlen)
model = Transformer(encoder, decoder)
# print(model)
# model = nn.DataParallel(model)
# optimizer
optimizer = TransformerOptimizer(
torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.98), eps=1e-09))
#model.parameters():可用于迭代优化的参数或者定义参数组的dicts。
#lr (float, optional) :学习率(默认: 1e-3)
#betas (Tuple[float, float], optional):用于计算梯度的平均和平方的系数(默认: (0.9, 0.98))
#eps (float, optional):为了提高数值稳定性而添加到分母的一个项(默认: 1e-09)
#weight_decay (float, optional):权重衰减(如L2惩罚)
else:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
epochs_since_improvement = checkpoint['epochs_since_improvement']
model = checkpoint['model']
optimizer = checkpoint['optimizer']
logger = get_logger() #日志
# Move to GPU, if available
model = model.to(device)
# Custom dataloaders
train_dataset = AiShellDataset(args, 'train') #从train路径下获取train数据,并对wav类型数据进行预处理
#对数据设置批量和填充,pin_memory=True:锁页内存(不与硬盘进行交换);shuffle=True:打乱顺序;num_workers:工作进程数,越大批量处理越快,但加重CPU负担
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=pad_collate,
pin_memory=True, shuffle=True, num_workers=args.num_workers)
valid_dataset = AiShellDataset(args, 'dev')
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, collate_fn=pad_collate,
pin_memory=True, shuffle=False, num_workers=args.num_workers)
# Epochs
for epoch in range(start_epoch, args.epochs):
# One epoch's training
train_loss = train(train_loader=train_loader,
model=model,
optimizer=optimizer,
epoch=epoch,
logger=logger)
# writer.add_scalar('model/train_loss', train_loss, epoch)
lr = optimizer.lr #获取学习率值
print('\nLearning rate: {}'.format(lr))
# writer.add_scalar('model/learning_rate', lr, epoch)
step_num = optimizer.step_num #优化器更新学习率的次数
print('Step num: {}\n'.format(step_num))
# One epoch's validation
valid_loss = valid(valid_loader=valid_loader,
model=model,
logger=logger) #测试不需要优化器
# writer.add_scalar('model/valid_loss', valid_loss, epoch)
# Check if there was an improvement
is_best = valid_loss < best_loss #判断等式右边是否成立,成立is_best=1,否则is_best=0
best_loss = min(valid_loss, best_loss) #获得最小的loss值
if not is_best: #比较当前测试损失和以前最好的损失谁更小,并做标记
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
# Save checkpoint
# 保存最小损失的数据信息
save_checkpoint(epoch, epochs_since_improvement, model, optimizer, best_loss, is_best)
def train(train_loader, model, optimizer, epoch, logger): #数据训练
model.train() # train mode (dropout and batchnorm is used) 训练模式,有梯度,参数更新等
losses = AverageMeter() #损失平均值
# Batches
for i, (data) in enumerate(train_loader): #train_loader中有数据,标签和length
# Move to GPU, if available
padded_input, padded_target, input_lengths = data
padded_input = padded_input.to(device) #将输入数据放入设备中
padded_target = padded_target.to(device)
input_lengths = input_lengths.to(device)
# Forward prop.
pred, gold = model(padded_input, input_lengths, padded_target) #将数据放入模型中训练得到预测值和目标值
loss, n_correct = cal_performance(pred, gold, smoothing=args.label_smoothing)
#将目标值和预测值放入损失函数中得到损失和准确个数,smoothing(平滑正则化):防止过拟合
# Back prop.
optimizer.zero_grad() #将优化器梯度归零
loss.backward() #反向传播
# Update weights
optimizer.step() #更新参数
# Keep track of metrics
losses.update(loss.item()) #获得loss平均值
# Print status
if i % print_freq == 0: #默认print_freq = 100,每一百个数据训练完成后日志中记录一次平均损失等信息
logger.info('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.5f} ({loss.avg:.5f})'.format(epoch, i, len(train_loader), loss=losses))
return losses.avg #返回损失平均值
def valid(valid_loader, model, logger): #模型预测
model.eval() #预测模式
losses = AverageMeter()
# Batches
for data in tqdm(valid_loader):
# Move to GPU, if available
padded_input, padded_target, input_lengths = data
padded_input = padded_input.to(device)
padded_target = padded_target.to(device)
input_lengths = input_lengths.to(device)
with torch.no_grad():
# Forward prop.
pred, gold = model(padded_input, input_lengths, padded_target)
loss, n_correct = cal_performance(pred, gold, smoothing=args.label_smoothing)
# Keep track of metrics
losses.update(loss.item())
# Print status
logger.info('\nValidation Loss {loss.val:.5f} ({loss.avg:.5f})\n'.format(loss=losses))
return losses.avg
def main():
global args
args = parse_args()
train_net(args)
if __name__ == '__main__':
main()