HashMap主要方法源码分析(JDK1.8)

本篇从HashMap的put、get、remove方法入手,分析源码流程
(不涉及红黑树的具体算法)
jkd1.8中HashMap的结构为数组、链表、红黑树的形式
 
 
(未转化红黑树时)
 

 (转化为红黑树时的情况)


 

一、关于HashMap需要了解的静态常量

DEFAULT_INITIAL_CAPACITY 数组默认初始容量 16
DEFAULT_LOAD_FACTOR 默认负载因子 0.75
MIN_TREEIFY_CAPACITY 最小树容量 64
在下面的方法探究中将会提到这些静态常量的用处 
 

二、方法探究

1、put

HashMap中的数组是第一次调用put方法时才创建对象的

下面是从进入put到创建完数组的全过程

 

 将key、value作为参数传入后,计算key的hash,再传入putVal方法

/**
     * Implements Map.put and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

putVal()的整个流程如下        
1、先判断table是否为null,如果是,调用resize()
 
/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
resize
resize():
判断当前table为null后,初始化负载因子DEFAULT_LOAD_FACTOR
计算当前数组边界DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY
(第一次数组边界为16*0.75=12,当数组超过数组边界时会扩大为两倍。
也就是说数组中的元素达到或大于12时,将第一次扩大数组,大小变为16*2=32)
创建并返回大小为DEFAULT_INITIAL_CAPACITY的table对象。
(总的来说resize负责扩大数组容量和初始化数组)

 

以上就是调用put方法时HashMap对象内数组的创建过程

2、如果进入putVal()判断table不为null
利用hash值与(&)计算出数组下标,并判断是否为空
如果是,创建node对象并存入数组
如果不是,从当前下标的链表第一位开始一个个往下对比
①若hash和key值都相同,则break退出循环,之后进行value的替换,并返回oldValue
②若过程中遇到null,则创建node对象
  判断是否达到红黑树转换条件:如果当前链表长度达到8,进入treeifyBin方法
  判断表长度(如果小于64,则调用resize(),判断要不要增大数组
  反之replacementTreeNode,用红黑树代替当前链表

(向下遍历数组当前下标链表的操作)

(key相同时value的替换操作)


 

3、增加size(map中元素的数量)和modCount(对map的操作次数)

 

2、get

* Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
get
将key和key的hash传入getNode方法,并获取返回的Node对象的value
先判断数组不为null,且长度大于0
利用hash值先找到node可能在的列的第一个元素(当前传入key可能不存在)
再竖向遍历链表对比hash和key值

(上面的first即为node可能存在的链表的第一个元素) 

查找时如果第一个即匹配则直接返回

 否则往下遍历直到匹配或node为null

 

3、removeNode

/**
     * Implements Map.remove and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
removeNode

与getNode的逻辑类似,利用hash值查找可能存在的位置

如果链表第一位就匹配:

对链表的遍历:

判断node的类型,如果是链表则用node.nest来代替当前位置

最后操作数+1,size-1,返回被remove的node对象

 
 
 
 
 
 
 
posted @ 2020-04-20 21:13  就像空中月  阅读(474)  评论(0编辑  收藏  举报