C. George and Job
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The new ITone 6 has been released recently and George got really keen to buy it. Unfortunately, he didn't have enough money, so George was going to work as a programmer. Now he faced the following problem at the work.

Given a sequence of n integers p1, p2, ..., pn. You are to choose k pairs of integers:

 

[l1, r1], [l2, r2], ..., [lk, rk] (1 ≤ l1 ≤ r1 < l2 ≤ r2 < ... < lk ≤ rk ≤ nri - li + 1 = m), 

in such a way that the value of sum  is maximal possible. Help George to cope with the task.

Input

The first line contains three integers nm and k (1 ≤ (m × k) ≤ n ≤ 5000). The second line contains n integers p1, p2, ..., pn(0 ≤ pi ≤ 109).

Output

Print an integer in a single line — the maximum possible value of sum.

Sample test(s)
input
5 2 1
1 2 3 4 5
output
9
input
7 1 3
2 10 7 18 5 33 0
output
61

 题意:从一个长度为n的数列中选出k段区间长度为m的段,使得这k段数的和最大。

思路:DP方程:dp[i][j] = max(dp[i - 1][j], dp[i - m][j - 1] + sum[i] - sum[i - m]);

   dp[i][j]表示前i个数中选j段的最大和,sum[i]表示前i个数的和。

 1 #include<algorithm>
 2 #include<iostream>
 3 #include<limits.h>
 4 #include<stdlib.h>
 5 #include<string.h>
 6 #include<complex>
 7 #include<cstring>
 8 #include<iomanip>
 9 #include<stdio.h>
10 #include<bitset>
11 #include<cctype>
12 #include<math.h>
13 #include<string>
14 #include<time.h>
15 #include<vector>
16 #include<cmath>
17 #include<queue>
18 #include<stack>
19 #include<list>
20 #include<map>
21 #include<set>
22 
23 #define LL long long
24 
25 using namespace std;
26 const LL mod = 1e9 + 7;
27 const double PI = acos(-1.0);
28 const double E = exp(1.0);
29 const int M = 5005;
30 
31 int a[M];
32 LL ans[M];
33 LL dp[M][M];
34 
35 int main()
36 {
37     int n, m, k;
38     cin >> n >> m >> k;
39     for(int i = 1; i <= n; ++i){
40         cin >> a[i];
41         ans[i] = ans[i - 1] + a[i];
42     }
43     for(int i = m; i <= n; ++i)
44         for(int j = 1; j <= k; ++j)
45             dp[i][j] = max(dp[i - 1][j],dp[i - m][j - 1] + ans[i] - ans[i - m]);
46     cout << dp[n][k] << endl;
47     return 0;
48 }

 

posted on 2015-07-20 12:19  Unico  阅读(166)  评论(0)    收藏  举报