使用 CUDA 12.9 编译 PyTorch 2.4.0
最近跑的一个项目需要 torch==2.4.0,但是 GPU 需要 CUDA 12.9,PyTorch 官方这个配置的预编译包,因此需要手动编译。
- 操作系统:Ubuntu 24.04 LTS
- GPU:NVIDIA RTX PRO 6000 (SM 12.0, CUDA 12.9)
-
获取源码:
git clone -b v2.4.0 --depth 1 https://github.com/pytorch/pytorch cd pytorch git submodule sync git submodule update --init --recursive --depth 1 --progress -
安装编译环境:
sudo apt install libnvtoolsext1 sudo ln -s /usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1 /usr/lib/x86_64-linux-gnu/libnvToolsExt.so sudo ln -s /usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1 /usr/local/cuda-12.9/lib64/libnvToolsExt.so sudo ln -s /usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1.0.0 /usr/local/cuda-12.9/lib64/libnvToolsExt.so.1 cd pytorch sudo cp third_party/nccl/nccl/src/include/nvtx3/nvToolsExt.h /usr/local/cuda-12.9/include/ sudo cp third_party/nccl/nccl/src/include/nvtx3/nvToolsExtCuda*.h /usr/local/cuda-12.9/include/ export CPATH="$CUDA_HOME/targets/x86_64-linux/include/nvtx3" export conda create -n torch-builder python=3.12 conda activate torch-builder pip install -U cmake~=3.18.0 mkl-static mkl-include pip install -r requirements.txt -
安装 triton:
curl -sSL https://raw.githubusercontent.com/pytorch/pytorch/refs/heads/main/.ci/docker/common/install_magma.sh | sudo bash -s -- 12.9 # 修改 CUDA 版本 make triton -
编译安装 torch:
export TORCH_CUDA_ARCH_LIST="12.0" export _GLIBCXX_USE_CXX11_ABI=1 export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"} python setup.py develop

浙公网安备 33010602011771号