使用 CUDA 12.9 编译 PyTorch 2.4.0

最近跑的一个项目需要 torch==2.4.0,但是 GPU 需要 CUDA 12.9,PyTorch 官方这个配置的预编译包,因此需要手动编译。

  • 操作系统:Ubuntu 24.04 LTS
  • GPU:NVIDIA RTX PRO 6000 (SM 12.0, CUDA 12.9)
  1. 获取源码:

    git clone -b v2.4.0 --depth 1 https://github.com/pytorch/pytorch
    cd pytorch
    git submodule sync
    git submodule update --init --recursive --depth 1 --progress
    
  2. 安装编译环境:

    sudo apt install libnvtoolsext1
    sudo ln -s /usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1 /usr/lib/x86_64-linux-gnu/libnvToolsExt.so
    sudo ln -s /usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1 /usr/local/cuda-12.9/lib64/libnvToolsExt.so
    sudo ln -s /usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1.0.0 /usr/local/cuda-12.9/lib64/libnvToolsExt.so.1
    cd pytorch
    sudo cp third_party/nccl/nccl/src/include/nvtx3/nvToolsExt.h /usr/local/cuda-12.9/include/
    sudo cp third_party/nccl/nccl/src/include/nvtx3/nvToolsExtCuda*.h /usr/local/cuda-12.9/include/
    export CPATH="$CUDA_HOME/targets/x86_64-linux/include/nvtx3"
    export 
    
    conda create -n torch-builder python=3.12
    conda activate torch-builder
    pip install -U cmake~=3.18.0 mkl-static mkl-include
    pip install -r requirements.txt
    
  3. 安装 triton:

    curl -sSL https://raw.githubusercontent.com/pytorch/pytorch/refs/heads/main/.ci/docker/common/install_magma.sh | sudo bash -s -- 12.9  # 修改 CUDA 版本
    make triton
    
  4. 编译安装 torch:

    export TORCH_CUDA_ARCH_LIST="12.0"
    export _GLIBCXX_USE_CXX11_ABI=1
    export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
    python setup.py develop
    

参考:pytorch/pytorch#v2.4.0

posted @ 2025-09-14 13:37  Undefined443  阅读(151)  评论(0)    收藏  举报