BoydC5pt3
Previous part: BoydC5pt2
Optimality conditions
Certificate of suboptimality and stopping criteria
Since \(f_0(x)-p^*\leq f_0(x)-g(\lambda,\nu)\)
can be used as nonheuristic stopping criteria. A similar condition can be used to guarantee a given relative accuracy \(\varepsilon_{\text{rel}}\).
Complementary slackness
Thm 5.1. assume strong duality holds, \(x^*\) is primal optimal, \((\lambda^*,\nu^*)\) is dual optimal
hence, the two inequalities hold with equality, \(x^*\) minimizes \(L(x,\lambda^*,\nu^*)\), \(\lambda_i f_i(x^*)=0\) (complementary slackness).
KKT optimality conditions
Thm 5.2. the following 4 conditions are called KKT conditions (differentiable \(f_i,h_i\)), \(\exists~\lambda,\nu\) \(s.t.\)
- primal constraints: \(f_i(x)\leq 0\), \(h_i(x)=0\)
- dual constraints: \(\lambda\succeq 0\)
- complementary slackness: \(\lambda_i f_i(x^*)=0\)
- gradient of Lagrangian w.r.t. \(x\) :
For a convex problem which satisfies Slater's condition, \(\exists~\lambda^*\geq 0,\nu^*\) satisfy KKT \(\Leftrightarrow\) \(x^*\) optimal .
proof.
KKT \(\Rightarrow\) optimal. \(x^*\) is feasible and
\[\begin{aligned} f(x)-f(x^*) &\geq \nabla f(x^*)^T(x-x^*)\\ &=-(\sum_{i=1}^{m} \lambda_i \nabla f_i(x^*) + \sum_{i=1}^{p} \nu_i \nabla h_i(x^*))^T(x-x^*)\\ &\geq -\sum_{i=1}^{m} \lambda_i f_i(x)\geq 0\\ L(x^*,\lambda^*,\nu^*) &=\inf_x L(x,\lambda^*,\nu^*)= f(x^*) =p^*=d^*\\ &=g(\lambda^*,\nu^*)\geq g(\lambda,\nu) \end{aligned} \]\(\lambda^*,\nu^*\) are also optimal.
\(x^*\) optimal \(\Rightarrow\) KKT.
\(x^*\) optimal \(\Rightarrow\) \(\exist~\lambda^*\geq 0\) \(s.t.\) \(g(\lambda^*,\nu^*)=f(x^*)\) \(=\) \(L(x^*,\lambda^*,\nu^*)\) \(=\) \(p^*=d^*\)
\[\begin{aligned} \nabla_x L(x^*,\lambda^*,\nu^*)=0 &\Rightarrow ~\text{4th cond}\\ x^*~\text{feasible} &\Rightarrow \text{primal constraints}\\ \text{Slater's cond} + \text{thm 5.1} &\Rightarrow \text{complementary slackness}\\ \end{aligned} \]
Perturbation and sensitivity analysis
The perturbed problem
Def 6.1. For unperturbed problem
perturbed problem is
and its dual
Def 6.2. define \(p^*(u,v)\) as the optimal value of the perturbed problem :
A global inequality
Thm 6.1. Assume that strong duality holds, and that the dual optimum is attained. Let \((\lambda^*,\nu^*)\) be optimal for the dual of the unperturbed problem, then
Local sensitivity analysis
Thm 6.2.
proof
\[\begin{aligned} \frac{\partial p^*(0,0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^*(te_i,0) - p^*(0,0)}{t} \geq -\lambda_i^*\\ \frac{\partial p^*(0, 0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^*(t e_i, 0) - p^*(0, 0)}{t} \leq -\lambda_i^* \end{aligned} \]
Next part: BoydC5pt4