BoydC3pt2

Previous part: BoydC3pt1
Operations that preserve convexity
There are some practical methods for establishing convexity of a function.
- verify definition (often simplified by restricting to a line);
- for twice differentiable functions, show \(\nabla^2 f(x) \succeq 0\);
- show that \(f\) is obtained from simple convex functions by operations that preserve convexity.
- show \(\mathbf{epi}~f\) is convex, which can convert the computation of functions into operations on sets.
Positive weighted sum & composition with affine function
Thm 2.1. Such operations preserve convexity
- nonnegative multiple: \(f\) is convex \(\Rightarrow\) \(\alpha f\) is convex, \(\alpha\geq 0\).
- sum: \(f_1,f_2\) are convex \(\Rightarrow\) \(f_1+f_2\) is convex.
which extends to infinite sums, integrals. \(e.g.\) if \(f(x,y)\) is convex in \(x\) and \(w(y)\geq 0\) for \(y\in\mathcal{A}\), then
\[g(x) = \int_{\mathcal{A}}w(y)f(x,y)~dy \]is convex in \(x\).
- composition with affine function: \(f\) is convex \(\Rightarrow\) \(f(Ax+b)\) is convex.
Pointwise maximum
Thm 2.2. If \(f_k\) are convex \((k\in\left[m\right])\), their pointwise maximum
is convex.
Ex 2.1. Sum of \(r\) largest components. For \(x\in\mathbb{R}^n\) we denote by \(x_{\left[i\right]}\) the \(i\)-th largest component of \(x\), \(i.e.\)
\[x_{\left[1\right]}\geq x_{\left[2\right]}\geq \cdots \geq x_{\left[n\right]} \]Then the function
\[f(x) = \sum_{i=1}^r x_{\left[i\right]} \]is convex.
Thm 2.3. If for \(y\in\mathcal{A}\), \(f(x,y)\) is convex in \(x\), then the function
is convex. The domain of \(g\) is
Let \(f_y(x)=f(x,y)\) for certain \(y\), \(\mathbf{epi}~g=\cap_{y\in\mathcal{A}}~\mathbf{epi}~f_y\) is convex.
Composition
Thm 2.4. Composition with scalar functions: \(g:\mathbb{R}^n\to\mathbb{R}\) and \(h:\mathbb{R}\to\mathbb{R}\),
is convex if \(\begin{cases} &g~\text{convex},~h~\text{convex},~\tilde{h} ~\text{nondecreasing}\\ & g~\text{concave},~h~\text{convex},~\tilde{h} ~\text{nonincreasing} \end{cases}\)
Thm 2.5. Vector composition: \(g:\mathbb{R}^n\to\mathbb{R}^k\) and \(h:\mathbb{R}^k\to\mathbb{R}\),
is convex if \(\begin{cases} &g_i~\text{convex},~h~\text{convex},~\tilde{h} ~\text{nondecreasing in each argument}\\ &g_i~\text{concave},~h~\text{convex},~\tilde{h} ~\text{nonincreasing in each argument} \end{cases}\)
Minimization
Thm 2.5. If \(f(x, y)\) is convex in \((x, y)\) and \(C\) is a convex set, then
is convex.
Rmk. Thm 2.5 is similar to thm 2.3, but with a little difference: thm 2.5 requires \(f\) is convex in \((x, y)\), but thm 2.3 just requires \(f\) is convex in \(x\).
proof. \(\mathbf{epi}~f = \{(x,y,t)~|~t\geq f(x,y)\}\) is convex, and \(\mathbf{epi}~g\) \(=\) \(\{(x,t)~|~(x,y,t)\in \mathbf{epi}~f~\text{for some}~y\in C\}\) \(=\) \(\cup_{y\in C}\) \(\{(x,t)~|~(x,y,t)\in \mathbf{epi}~f\}\). Hence \(\forall~(x_1,t_1),(x_2,t_2)\in\mathbf{epi}~g\), \(\exists~y_1,y_2\in C\) \(s.t.\) \((x_1,y_1,t_1)\) and \((x_2,y_2,t_2)\in\mathbf{epi}~f\). Thus \(\theta(x_1,y_1,t_1)+(1-\theta)(x_2,y_2,t_2)\in \mathbf{epi}~f\) for \(0\leq\theta\leq 1\) and \(\theta y_1+(1-\theta)y_2\in C\), which means \(\theta(x_1,t_1)+(1-\theta)(x_2,t_2)\in\mathbf{epi}~g\). \(\mathbf{epi}~g\) convex \(\Rightarrow\) \(g\) is convex.
In fact, \(\mathbf{epi}~g\) is the projection of \(\mathbf{epi}~f\) on some of its components. But the projection is little different from thm 3.4 of BoydC2 ( \(y\in\mathbb{R}^n\) in thm 3.4 but \(y\in C\) here, which can be regarded as a promotion of thm 3.4).
Perspective of a function
Def 2.1. The perspective of a function \(f:\mathbb{R}^n\to \mathbb{R}\) is the function \(g:\mathbb{R}^{n}\times\mathbb{R}\to \mathbb{R}\):
\(g\) is convex if \(f\) is convex.
The conjugate function
Definition and examples
Def 3.1. The conjugate of a function \(f\) is
\(f^*\) is convex
Ex 3.1. Norm: the conjugate of \(f(x)=\|x\|\).
where \(\|v\|_*=\sup_{\|u\|\leq 1}u^Tv=\sup_{\|u\|= 1}u^Tv\) is the dual norm of \(\|\cdot\|\).
Ex 3.2. Entropy maximization: \(f(x)=\sum_{i=1}^n x_i\log x_i\)
let
then \(x_i=e^{y_i-1}\).
Thus
Basic properties
Thm 3.1. Fenchel’s inequality:
Thm 3.2. If \(f\) is convex and closed, then \(f^{**}=f\).
proof 1. using minimax theorem (not rigorous) \(f^{**}(z)\) \(=\) \(\sup_y z^Ty-f^{*}(y)\) \(=\) \((\sup_y z^Ty-\sup_x(y^Tx-f(x)))\) \(=\) \(\sup_y \inf_x(z^Ty-y^Tx+f(x))\) \(=\) \(\inf_x\sup_y((z-x)^Ty+f(x))\).
\[\sup_y((z-x)^Ty+f(x)) = \begin{cases} & \infty \quad & x\neq z\\ & f(z) & x=z \end{cases} \]Thus \(\inf_x\sup_y((z-x)^Ty+f(x))=f(z)\) \(i.e.\) \(f^{**}(z)=f(z)\) .
proof 2. using the lemma: If \(f:\mathbb{R}^n\to\mathbb{R}\) is convex,
\[\tilde{f}(x)=\sup\{g(x)~|~g~\text{affine},~g(z)\leq f(z)~\text{for all}~z\} \]\(\tilde{f}=f\) if \(f\) is closed.
let
\[G=\bigcup_y \{g~|g(x)=y^Tx+b,~b\leq -f^*(y)\} \]then \(f^{**}(x)=\sup\{g(x)~|~g\in G\}\), \(G\subseteq\) \(\{g~|~g~\text{affine},~g(x)\leq f(x)\}\).
Assume for contradiction that \(\exists~g(x)=a^Tx+b\), \(g(x)\leq f(x)\) and \(g\notin G\) \(\Rightarrow\) \(g\) \(\notin\) \(\{g~|g(x)=a^Tx+b,~b\leq -f^*(a)\}\) \(\Rightarrow\) \(b> -f^*(a)=\inf_x f(x)- a^Tx\), which conflicts with \(g(x)=a^Tx+b\leq f(x)\). Thus \(\{g~|~g~\text{affine},~g(x)\leq f(x)\}\) \(\subseteq\) \(G\).
So \(f^{**}(x)=\sup\{g(x)~|~g~\text{affine},~g(z)\leq f(z)~\text{for all}~z\}\). \(f^{**}=f\).
Rmk. The above derivation actually clarifies the meaning of \(-f^*(y)\): it is the intercept of the tangent line to \(f(x)\) with a slope of \(y\). \(y^T x - f^*(y)\) represents a tangent line to \(f(x)\).
Thm 3.2. If \(f\) is differentiable, \(f^*\) is also called Legendre transform of \(f\) and
where \(\nabla f(x^*)=y\).
Thm 3.3. If \(g(x)=f(Ax+b)\), \(A\in\mathbb{R}^{n\times n}\)
Next part: BoydC3pt3

Notes for CVX101 and Convex Optimization(Boyd)-Chapter 3 Convex functions (part 2). CPO w.r.t. functions, conjugate function
浙公网安备 33010602011771号