「SDOI 2018」战略游戏

题目大意:

  给一个$G=(V,E)$,满足$|V|=n$,$|E|=m$,且保证图联通,有Q个询问,每组询问有s个点,求图中有多少点满足:将其删去后,这s个点中存在一对点集$(a,b)$不联通且删去点不为s中的点。

  $n,m,\sum s$均为$1e5$级别。

题解:

  显然满足性质的点都是割点。

  我们建一颗圆方树,然后考虑对于每组询问为所有点之间路径覆盖的割点数量。

  用虚树+树剖维护即可。

  不是很难,但考场上把点双写错,多调了1h。

代码:

#include "bits/stdc++.h"

using namespace std;

inline int read() {
    int s=0,k=1;char ch=getchar();
    while (ch<'0'|ch>'9') ch=='-'?k=-1:0,ch=getchar();
    while (ch>47&ch<='9') s=s*10+(ch^48),ch=getchar();
    return s*k;
}

const int N=2e5+10;

struct edges {
    int v;edges *last;
};

int n,m;

int low[N],dfn[N],stk[N],bcc_cnt,top,idx,rt,son,cut[N],bel[N],pos[N];
vector<int> bcc[N];

int ga[N],fat[N],rid[N],size[N],heavy[N],tid[N],dfx,ncut[N],deep[N];

struct Group{
    inline void Clear(){ecnt=edge;memset(head,0,sizeof head);}
    edges edge[N<<2],*head[N],*ecnt;

    inline void push(int u,int v){
        *ecnt=(edges){v,head[u]},head[u]=ecnt++;
        *ecnt=(edges){u,head[v]},head[v]=ecnt++;
    }

    inline void tarjan(int x,int fa) {
        low[x]=dfn[x]=++idx;
        for (edges *i=head[x];i;i=i->last) if ((fa^1)!=i-edge){
            if (!dfn[i->v]) {
                if (x==rt) ++son;
                stk[++top] = i-edge;
                tarjan(i->v,i-edge);
                if (low[i->v]>=dfn[x]) {
                    int t=0;bcc_cnt++;
                    bcc[bcc_cnt].clear();
                    do {    
                        t=stk[top--];       
                        bcc[bcc_cnt].push_back(edge[t].v);
                    }while (t!=i-edge);
                    bcc[bcc_cnt].push_back(x);
                    cut[x]=true;
                } else low[x]=min(low[i->v],low[x]);
            } else if (dfn[i->v]<low[x]){
                low[x] = dfn[i->v];
            }
        }
    }
    
    inline void tarjan(){
        rt=1;son=0;
        tarjan(1,-1);

        if (son>1) cut[1]=true;
        else cut[1]=false;
    }
    
    inline void dfs(int x,int fa) {
        size[x]=1;
        for (edges *i=head[x];i;i=i->last) if (i->v!=fa) {
            deep[i->v]=deep[x]+1;
            dfs(i->v,x);
            fat[i->v]=x;
            size[x]+=size[i->v];
            if (size[i->v]>size[heavy[x]])
                heavy[x]=i->v;
        }
    }
    
    inline void dfs(int x,int fa,int grand) {
        ga[x]=grand;
        tid[x]=++dfx;
        rid[dfx]=x;
        if (heavy[x]) {
            dfs(heavy[x],x,grand);
            for (edges *i=head[x];i;i=i->last) if (i->v!=fa&&i->v!=heavy[x])
                dfs(i->v,x,i->v);
        }
    }
    
    inline void dfs() {
        dfs(1,0);
        dfs(1,0,1);
    }
}g[2];

struct node {
    node (){lc=rc=NULL,val=0;}
    node *lc,*rc;
    int val;
}tree[N*40],*tcnt=tree,*fina,*root;

inline void update(node *u) {
    u->val=u->lc->val+u->rc->val;
}

inline void build (node *&u,int l,int r) {
    u=tcnt++;
    *u=node();
    if (l==r) {
        u->val=ncut[rid[l]];
        return ;
    }
    int mid=l+r>>1;
    build(u->lc,l,mid);
    build(u->rc,mid+1,r);
    update(u);
}

inline void update(node *&u,int l,int r,int x,int y) {
    if (u<fina)    {
        node *t=tcnt++;
        *t=*u;
        u=t;
    }
    if (x<=l&&r<=y) {u->val=0;return ;}
    int mid=l+r>>1;
    if (y>mid) update(u->rc,mid+1,r,x,y);
    if (x<=mid) update(u->lc,l,mid,x,y);
    update(u);
}

inline int query(node *u,int l,int r,int x,int y) {
    if (!u->val) return 0;
    if (x<=l&&r<=y) return u->val;
    int mid=l+r>>1,ret=0;
    if (y>mid) ret+=query(u->rc,mid+1,r,x,y);
    if (x<=mid) ret+=query(u->lc,l,mid,x,y);
    return ret;
}

inline int cmp(int x,int y) {
    return tid[x]<tid[y];
}

inline int lca(int x,int y) {
    while (ga[x]!=ga[y]) {
        if (deep[ga[x]]<deep[ga[y]])
            swap(x,y);
        x=fat[ga[x]];
    }
    if (deep[x]<deep[y]) return x;
    return y;
}

inline int query(int x,int y) {
    int ret=0;
    while (ga[x]!=ga[y]) {
        if (deep[ga[x]]<deep[ga[y]])
            swap(x,y);
        ret+=query(root,1,m,tid[ga[x]],tid[x]);
        update(root,1,m,tid[ga[x]],tid[x]);
        x=fat[ga[x]];
    }
    if (deep[x]>deep[y]) swap(x,y);
    if (tid[x]<=tid[y])
        ret+=query(root,1,m,tid[x],tid[y]),
        update(root,1,m,tid[x],tid[y]);
    return ret;
}

int main (int argc, char const* argv[]){
    int T=read();
    while (T--){
        memset(g,0,sizeof g);   
        g[0].Clear();
        g[1].Clear();
        memset(cut,0,sizeof cut);
        memset(ncut,0,sizeof ncut);
        memset(dfn,0,sizeof dfn);
        memset(heavy,0,sizeof heavy);
        tcnt=tree;
        bcc_cnt=0;
        dfx=0,idx=0;
        n=read(),m=read();
        register int i,j;
        for (i=1;i<=m;++i) {
            int x=read(),y=read();
            g[0].push(x,y);
        }
        g[0].tarjan();
        int s=bcc_cnt;
        for (i=1;i<=n;++i)
            if (cut[i])
                ++s,cut[i]=s,ncut[cut[i]]=1;
        for (i=1;i<=bcc_cnt;++i)    {
            for (j=0;j<bcc[i].size();++j)
                if (cut[bcc[i][j]])
                    g[1].push(i,cut[bcc[i][j]]);
                else bel[bcc[i][j]]=i;
        }
        g[1].dfs();
        build(root,1,s);
        m=s;
        fina=tcnt;
        int Q=read(),tmp;
        int ans=0;
        while (Q--) {
            root=tree;
            tcnt=fina;
            s=read();
            for (i=1;i<=s;++i) {
                pos[i]=read();
                if (cut[pos[i]])   pos[i]=cut[pos[i]],update(root,1,m,tid[pos[i]],tid[pos[i]]);
                else pos[i]=bel[pos[i]];
            }
            sort(pos+1,pos+s+1,cmp);
            tmp=pos[1];
            ans=0;
            for (i=2;i<=s;++i) {
                ans+=query(tmp,pos[i]);

            }
            printf("%d\n",ans);
        }
    }
    return 0;
}

  

posted @ 2018-05-19 20:43  Troywar  阅读(350)  评论(0编辑  收藏