【机器学习】量化策略
摘要:1 # 可以自己import我们平台支持的第三方python模块,比如pandas、numpy等。 2 import numpy as np 3 from sklearn.linear_model import LinearRegression 4 5 6 # 在这个方法中编写任何的初始化逻辑。co
阅读全文
【机器学习】数据降维
摘要:1 import pandas as pd 2 from sklearn.decomposition import PCA 3 4 # 以detail 为例实现数据降维 5 # 加载数据 6 7 detail = pd.read_excel("../day05/meal_order_detail.x
阅读全文
【机器学习】基于逻辑回归的癌症预测案例
摘要:1 import pandas as pd 2 import numpy as np 3 from sklearn.preprocessing import StandardScaler # 标准化 4 from sklearn.model_selection import train_test_s
阅读全文
【机器学习】基于线性回归的波士顿房价预测
摘要:1 import pandas as pd 2 from sklearn.datasets import load_boston # 波士顿房价数据 3 from sklearn.model_selection import train_test_split # 拆分数据集 4 from sklea
阅读全文
【机器学习】词云(wordcloud)统计词的重要性
摘要:1 from wordcloud import WordCloud,ImageColorGenerator 2 import matplotlib.pyplot as plt 3 import jieba 4 from PIL import Image 5 import numpy as np 6
阅读全文
【机器学习】朴素贝叶斯文本分类案例
摘要:1 import pandas as pd 2 from sklearn.feature_extraction.text import CountVectorizer 3 import jieba 4 import numpy as np 5 from sklearn.naive_bayes imp
阅读全文
【机器学习】统计词数与词的重要性
摘要:1 from sklearn.feature_extraction.text import CountVectorizer 2 from sklearn.feature_extraction.text import TfidfVectorizer 3 import jieba 4 5 content
阅读全文
【机器学习】knn优化
摘要:1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt 4 import os 5 from sklearn.neighbors import KNeighborsClassifier # knn分类
阅读全文
【机器学习】k-means——NBA球员聚类分析
摘要:1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt 4 from sklearn.cluster import KMeans 5 6 7 def build_data(): 8 """ 9 构建数据
阅读全文
【机器学习】knn——手写字识别案例
摘要:1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt 4 import os 5 from sklearn.neighbors import KNeighborsClassifier # knn分类
阅读全文
【机器学习】knn算法自实现
摘要:1 import pandas as pd 2 import numpy as np 3 4 5 def build_data(): 6 """ 7 加载数据 8 :return: 9 """ 10 # 1、加载数据 11 data = pd.read_excel("./电影分类数据.xlsx")
阅读全文
【机器学习】k-means——航空用户聚类分析案例
摘要:1 import pandas as pd 2 import numpy as np 3 from sklearn.cluster import KMeans 4 import matplotlib.pyplot as plt 5 6 7 def stand_sca(data): 8 """ 9 标
阅读全文
【机器学习】k-means算法原理自实现
摘要:1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt 4 from sklearn.cluster import KMeans # 导入k-means 5 6 7 def build_data():
阅读全文