P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化
多重背包, 要求 \(N\log N\) 复杂度
Solution
众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - 2^{\log N}\) 拼凑而成
我们知道一定有一种最优方案, 使得第 \(i\) 种物品只消耗 \(x\) 个 \((x <= n_{i})\)
而 \(x\) 可以被二进制凑出来
所以我们先二进制拆分物品件数, 再跑 \(01\) 背包即可
P1776 宝物筛选_NOI导刊2010提高(02)
板题
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 2000019;
LL num, V;
LL v[maxn], w[maxn], cnt;
LL dp[maxn];
int main(){
num = RD(), V = RD();
for(LL i = 1;i <= num;i++){
LL val = RD(), wei = RD(), n = RD(), t = 1;
while(n >= t){
v[++cnt] = val * t, w[cnt] = wei * t;
n -= t;
t <<= 1;
}
v[++cnt] = val * n, w[cnt] = wei * n;
}
for(LL i = 1;i <= cnt;i++){
for(LL j = V;j >= w[i];j--){
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
}
}
printf("%lld\n", dp[V]);
return 0;
}

浙公网安备 33010602011771号