HDU3652:B-number(数位DP)
Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
Output
Print each answer in a single line.
Sample Input
13 100 200 1000
Sample Output
1
1
2
2
题意:给你一个数n,找出1~n之间有几个数能被13整除而且含有13。
dp[len][mod][have],len表示当前的位数,mod表示上一位mod 13 的余数,have = 1表示前一位取1,have = 2表示出现过“13”。
思路就是记忆化搜索设置参数flag表示接下来的数是否一定比给的数小。
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
ll dp[30][20][3];
ll a[30];
ll dfs(int len , int mod , int have , int flag) {
if(len == 0) {
return have == 2 && mod == 0;
}
if(!flag && dp[len][mod][have] != -1) {
return dp[len][mod][have];
}
int t = flag ? a[len] : 9;
ll sum = 0;
for(int i = 0 ; i <= t ; i++) {
if(have == 0 && i == 1) {
sum += dfs(len - 1 , (mod * 10 + i) % 13 , 1 , flag && i == t);
}
else if(have == 1 && i == 3) {
sum += dfs(len - 1 , (mod * 10 + i) % 13 , 2 , flag && i == t);
}
else if(have == 1 && i != 1) {
sum += dfs(len - 1 , (mod * 10 + i) % 13 , 0 , flag && i == t);
}
else {
sum += dfs(len - 1 , (mod * 10 + i) % 13 , have , flag && i == t);
}
}
if(!flag)
dp[len][mod][have] = sum;
return sum;
}
ll Get(ll x) {
ll gg = x;
memset(dp , -1 , sizeof(dp));
memset(a , 0 , sizeof(a));
int len = 0;
while(gg) {
a[++len] = gg % 10;
gg /= 10;
}
return dfs(len , 0 , 0 , 1);
}
int main()
{
ll n;
while(cin >> n){
cout << Get(n) << endl;
}
return 0;
}

浙公网安备 33010602011771号