机器学习—降维-特征选择6-5(LDA方法)

使用LDA对糖尿病数据集降维

主要步骤流程:

  • 1. 导入包
  • 2. 导入数据集
  • 3. 数据预处理
    • 3.1 检测缺失值
    • 3.2 生成自变量和因变量
    • 3.3 拆分训练集和测试集
    • 3.4 特征缩放
  • 4. 使用 LDA 降维
    • 4.1 使用 LDA 降维
    • 4.2 验证 X_train_lda 的由来
  • 5. 构建逻辑回归模型
    • 5.1 使用原始数据构建逻辑回归模型
    • 5.2 使用降维后数据构建逻辑回归模型
  • 6. 可视化LDA降维效果

1. 导入包

In [2]:
# 导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

 

2. 导入数据集

In [3]:
# 导入数据集
dataset = pd.read_csv('pima-indians-diabetes.csv')
dataset
Out[3]:
 pregplaspresskintestmasspediageclass
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1
... ... ... ... ... ... ... ... ... ...
763 10 101 76 48 180 32.9 0.171 63 0
764 2 122 70 27 0 36.8 0.340 27 0
765 5 121 72 23 112 26.2 0.245 30 0
766 1 126 60 0 0 30.1 0.349 47 1
767 1 93 70 31 0 30.4 0.315 23 0

768 rows × 9 columns

 

3. 数据预处理

3.1 检测缺失值

In [4]:
# 检测缺失值
null_df = dataset.isnull().sum()
null_df
Out[4]:
preg     0
plas     0
pres     0
skin     0
test     0
mass     0
pedi     0
age      0
class    0
dtype: int64

3.2 生成自变量和因变量

In [5]:
# 生成自变量和因变量
X = dataset.iloc[:,0:8].values
y = dataset.iloc[:,8].values

3.3 拆分训练集和测试集

In [6]:
# 拆分训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, 
                    test_size = 0.2, random_state = 2)

3.4 特征缩放

In [7]:
# 特征缩放
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

 

4. 使用 LDA 降维

4.1 使用 LDA 降维

In [8]:
# 使用 LDA 生成新的自变量
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
lda = LDA(n_components = None)
X_train_lda = lda.fit_transform(X_train, y_train)
print(X_train_lda)
[[-7.09580575e-01]
 [-1.25232619e+00]
 [-7.59813997e-01]
 [ 2.24487957e+00]
 [-1.83472235e+00]
 [ 1.72713900e+00]
 [-7.01671717e-01]
 [-3.75717668e+00]
 [-4.42372899e-02]
 [-1.44707200e+00]
 [-3.64381132e-01]
 [-1.22559889e+00]
 [-4.34165087e-01]
 [ 2.62545954e+00]
 [ 5.29809659e-02]
 [-1.28741643e+00]
 [-1.33326464e-01]
 [ 1.32496639e+00]
 [-8.41212474e-01]
 [-5.80913765e-01]
 [-9.31947468e-01]
 [-4.71240842e-01]
 [ 6.01506952e-01]
 [ 8.09658116e-02]
 [-5.36135643e-01]
 [-1.24878685e+00]
 [-8.74004230e-01]
 [-1.38735113e+00]
 [ 1.87812923e+00]
 [ 3.34056050e-01]
 [-1.65936332e+00]
 [-1.55708389e+00]
 [-1.03447627e+00]
 [ 2.78128145e-01]
 [-1.07863887e+00]
 [ 9.24997670e-01]
 [-4.40200308e-01]
 [-7.82628235e-01]
 [ 6.24893963e-01]
 [ 1.37482261e+00]
 [ 4.83817890e-01]
 [ 1.18420457e-01]
 [ 1.93598829e-01]
 [-1.38235717e-01]
 [-4.45815683e-01]
 [-1.73559267e+00]
 [-4.53253421e-01]
 [ 1.36693114e+00]
 [-1.11857616e+00]
 [-9.27818986e-01]
 [ 9.03495498e-01]
 [-2.08423086e-01]
 [ 1.09073837e+00]
 [-1.78992797e-01]
 [-1.81685894e-01]
 [ 1.55669292e+00]
 [ 1.70649911e+00]
 [-8.30370459e-01]
 [ 1.74389260e+00]
 [-4.38333981e-01]
 [-1.32175889e+00]
 [-1.17902590e+00]
 [-1.27970387e+00]
 [ 2.64997197e-01]
 [ 1.83927441e+00]
 [ 2.87603583e+00]
 [ 1.32747827e+00]
 [-1.23317807e+00]
 [-6.38667579e-01]
 [-2.49730690e+00]
 [-7.50335687e-01]
 [ 1.13819241e+00]
 [-1.51819792e+00]
 [ 3.48699578e-01]
 [ 2.07291912e+00]
 [ 1.18872205e+00]
 [-1.26752930e+00]
 [-9.61061338e-01]
 [-1.48481631e+00]
 [-6.16788749e-01]
 [ 1.00107373e+00]
 [ 1.64183047e+00]
 [ 7.62485249e-01]
 [-9.05966168e-01]
 [-1.76583480e+00]
 [ 1.15119270e+00]
 [-5.71248022e-01]
 [ 2.82671522e-01]
 [ 1.58923966e+00]
 [ 3.89370865e-02]
 [ 6.95987190e-04]
 [ 2.38587148e-02]
 [ 4.33294099e-01]
 [-1.61807242e+00]
 [-3.75036587e-02]
 [ 1.45518668e+00]
 [-9.09626996e-01]
 [-9.00170742e-01]
 [ 2.02443108e+00]
 [-6.88335740e-01]
 [ 2.33687536e+00]
 [-2.14774953e-01]
 [ 4.22766244e-01]
 [-7.44887303e-01]
 [ 1.78782795e-02]
 [-1.05789594e+00]
 [-1.48150473e+00]
 [-1.45801198e+00]
 [ 2.11355083e+00]
 [-5.60956835e-01]
 [-7.99557384e-01]
 [-2.53714672e+00]
 [ 1.15827139e-01]
 [-2.85981257e-01]
 [ 1.20870045e-01]
 [-1.50249259e-01]
 [ 1.28325311e+00]
 [-9.10469484e-01]
 [-2.04100810e-01]
 [ 3.04926411e-01]
 [-6.13533181e-01]
 [-1.13799972e+00]
 [ 1.85069640e+00]
 [-9.52159360e-01]
 [-1.07072549e+00]
 [ 1.54132020e+00]
 [-2.25155103e-01]
 [ 9.42723622e-01]
 [ 2.33261633e+00]
 [-2.50335599e+00]
 [-1.71081917e+00]
 [-5.69055863e-01]
 [-7.86551181e-02]
 [ 8.59624336e-01]
 [-1.27175612e+00]
 [-7.32892454e-01]
 [ 1.62806827e+00]
 [-1.73505213e+00]
 [ 5.89219216e-01]
 [ 9.61940538e-01]
 [ 1.21978497e+00]
 [-1.23402059e-01]
 [ 5.58089135e-01]
 [-1.97372406e+00]
 [-3.54738583e-01]
 [ 1.07679503e+00]
 [ 3.30921389e-02]
 [ 3.51641156e+00]
 [ 2.01319999e+00]
 [-4.79608603e-01]
 [-1.54500904e+00]
 [ 7.28837498e-01]
 [-7.68164175e-01]
 [ 6.03755150e-01]
 [-5.79291694e-01]
 [ 1.09312454e+00]
 [-7.60263201e-01]
 [ 6.99167689e-01]
 [ 1.37164718e+00]
 [ 1.31225828e+00]
 [-8.40653172e-01]
 [ 2.91430119e-02]
 [-8.29551054e-01]
 [-8.52135872e-01]
 [ 2.42179542e+00]
 [ 1.19833768e-01]
 [ 1.34468182e+00]
 [ 3.31802548e-01]
 [ 8.84131097e-01]
 [-1.08418018e+00]
 [ 3.16804052e-01]
 [ 1.95699099e-01]
 [ 1.18224504e+00]
 [-4.76551929e-02]
 [ 2.32738728e-01]
 [ 2.17302678e-01]
 [-5.89237273e-01]
 [ 1.85849443e-01]
 [-1.54979285e+00]
 [ 9.82798488e-01]
 [-5.83740225e-01]
 [-6.00824976e-01]
 [ 1.74716312e+00]
 [-8.40349063e-01]
 [-1.92108538e-01]
 [-6.60931850e-01]
 [-1.09416397e+00]
 [ 1.07363466e+00]
 [-7.56504146e-01]
 [ 4.81118721e-01]
 [ 4.58322441e-02]
 [-5.30149132e-02]
 [-9.83533399e-01]
 [-1.18611803e+00]
 [ 8.97981571e-01]
 [-1.38655961e+00]
 [ 8.65977388e-02]
 [-1.29923057e+00]
 [-2.00106616e-01]
 [-8.84903649e-01]
 [-1.01814576e+00]
 [-6.73380309e-01]
 [-2.57345929e-01]
 [-6.09999516e-01]
 [-9.99780327e-01]
 [ 1.42422789e+00]
 [-2.44448484e-01]
 [-1.13703421e+00]
 [-6.42258506e-01]
 [ 2.25918605e-01]
 [ 5.65663441e-01]
 [ 1.23524077e-01]
 [ 1.08528225e+00]
 [ 2.19363184e+00]
 [ 1.01163253e+00]
 [-7.94344125e-01]
 [-9.53004876e-01]
 [ 7.66628719e-01]
 [ 2.17274216e+00]
 [ 1.40669491e-01]
 [ 5.94159896e-01]
 [-5.55446317e-01]
 [ 3.51591179e-01]
 [ 1.50546591e+00]
 [ 5.66679498e-01]
 [ 3.85443340e-01]
 [-1.15721046e+00]
 [ 1.92121722e+00]
 [ 5.79754177e-01]
 [ 1.61088688e-01]
 [ 6.40910989e-02]
 [-4.15781837e-03]
 [ 1.20911354e+00]
 [ 5.81706676e-01]
 [ 9.29316806e-01]
 [-6.49635760e-01]
 [-1.29028128e+00]
 [ 1.19743896e+00]
 [ 1.73958239e+00]
 [ 1.06273540e+00]
 [-5.78708212e-01]
 [-5.91652462e-01]
 [-1.06403705e+00]
 [ 8.48748221e-01]
 [ 1.84245259e+00]
 [-1.12241556e+00]
 [-3.92319922e-01]
 [-5.06398050e-01]
 [-8.01740487e-01]
 [ 2.81827862e-01]
 [-3.73194844e-01]
 [ 1.27356384e-01]
 [ 1.38348151e+00]
 [-1.95791710e+00]
 [-1.69343253e+00]
 [ 1.57912787e+00]
 [ 1.56905793e+00]
 [-4.81162123e-01]
 [ 7.14304828e-01]
 [ 1.67063463e+00]
 [-7.24911993e-01]
 [ 1.00982197e+00]
 [-1.99039022e-01]
 [-9.26955565e-01]
 [ 2.98929969e+00]
 [ 2.66203782e-01]
 [-1.90022216e-01]
 [ 1.21421832e+00]
 [ 1.48219197e+00]
 [ 4.29338339e-01]
 [ 1.25202834e+00]
 [ 2.31888566e+00]
 [-1.81524331e-01]
 [ 4.03757358e-01]
 [-2.37300773e+00]
 [-5.05502452e-01]
 [ 1.57620164e+00]
 [-7.44501998e-01]
 [-2.78989955e+00]
 [-7.48811082e-01]
 [ 9.34453007e-03]
 [-8.86760850e-01]
 [ 2.40821378e+00]
 [ 7.52828238e-01]
 [ 1.01930801e+00]
 [-1.11676970e+00]
 [ 1.16286127e+00]
 [-1.38072161e+00]
 [ 5.06045144e-02]
 [ 1.28447844e+00]
 [ 1.10147534e+00]
 [-6.99471941e-01]
 [-3.95475313e-01]
 [-2.33814898e+00]
 [-5.58885514e-01]
 [-1.62515502e+00]
 [-4.80031790e-02]
 [-1.22933421e+00]
 [-1.43289330e+00]
 [ 3.82368455e-01]
 [-4.78784838e-01]
 [ 3.11226395e+00]
 [-2.19872519e-01]
 [-8.66012695e-02]
 [-8.61030811e-01]
 [-1.79659712e-02]
 [ 5.63343238e-01]
 [ 1.15772339e-01]
 [ 1.33832964e+00]
 [-9.20451870e-01]
 [-1.94203663e+00]
 [-2.10981127e+00]
 [-8.96254271e-01]
 [-1.01096412e+00]
 [-7.96968176e-01]
 [ 1.53526922e+00]
 [ 2.96828601e+00]
 [-2.37340281e+00]
 [-5.39905276e-01]
 [ 8.05031504e-03]
 [ 6.19929863e-02]
 [-4.07763181e-01]
 [-7.69899804e-01]
 [-1.06445126e-01]
 [ 2.44923107e+00]
 [-8.64897290e-01]
 [-9.61107269e-01]
 [ 1.12928198e+00]
 [-6.93799633e-01]
 [ 9.12263450e-02]
 [-1.65662030e+00]
 [ 1.23445066e+00]
 [-2.29989521e+00]
 [-6.67210528e-01]
 [ 1.39505120e+00]
 [-5.90146656e-01]
 [ 1.91599297e+00]
 [-3.07105657e-02]
 [-1.86495725e+00]
 [-4.10045496e-03]
 [ 1.95146853e+00]
 [-6.63388932e-01]
 [-1.25932062e-01]
 [-1.95617520e+00]
 [-7.24067222e-01]
 [ 1.68597191e+00]
 [ 7.67739195e-01]
 [ 1.50844457e+00]
 [-1.39040166e+00]
 [-5.28317583e-01]
 [-7.98163950e-01]
 [-2.05966934e+00]
 [-5.00389045e-01]
 [-3.08430392e-01]
 [-4.55409643e-01]
 [ 1.22705948e-01]
 [-6.42465319e-01]
 [-5.16243197e-01]
 [-1.36050953e+00]
 [-5.87265409e-01]
 [ 4.00535897e-01]
 [-2.11442799e-01]
 [-2.42412529e-02]
 [-1.86695525e+00]
 [-3.71845160e-01]
 [ 1.66009450e+00]
 [-3.22778860e-01]
 [-4.78111890e-01]
 [-9.44115662e-01]
 [-1.77911788e-01]
 [ 3.24741813e-01]
 [ 2.61166483e+00]
 [ 6.15827866e-01]
 [ 1.62305833e+00]
 [ 6.56975069e-01]
 [ 1.07649474e+00]
 [ 8.93244246e-01]
 [ 2.37038946e+00]
 [-1.00074397e+00]
 [-6.94135081e-02]
 [ 1.90692835e+00]
 [-4.16046203e-01]
 [-2.97009267e-01]
 [ 1.12324933e-02]
 [-1.73948585e+00]
 [ 1.83169245e+00]
 [-7.15739584e-01]
 [ 2.84526872e-01]
 [-2.08984309e-01]
 [ 6.05826777e-01]
 [-5.55760348e-02]
 [-1.60536248e+00]
 [-1.94578868e-01]
 [ 4.14010014e-01]
 [-4.67234277e-01]
 [-1.15041532e+00]
 [ 7.12527823e-01]
 [-1.13330316e+00]
 [-1.86227991e-01]
 [ 1.23994415e+00]
 [-4.75961697e-01]
 [-6.50655572e-01]
 [ 1.39405031e-01]
 [-1.36545193e-01]
 [-1.31667319e+00]
 [-1.32598029e+00]
 [ 2.76684219e+00]
 [-4.30281832e-01]
 [-1.12095251e+00]
 [ 9.24204330e-01]
 [ 8.88934406e-01]
 [-7.26751047e-01]
 [-1.51174785e+00]
 [ 1.02899443e+00]
 [-9.73167110e-01]
 [-5.71899107e-01]
 [ 1.33454081e-01]
 [ 1.34722884e+00]
 [ 6.89644744e-01]
 [ 5.02219295e-01]
 [ 3.37284935e-02]
 [ 6.68072083e-01]
 [-9.99431928e-01]
 [-6.88682252e-02]
 [ 5.87800737e-01]
 [ 1.13551804e+00]
 [-9.69739531e-01]
 [ 1.35179142e+00]
 [-6.42954624e-01]
 [-2.86754040e+00]
 [ 2.68309817e+00]
 [-1.47644791e-01]
 [ 1.24845834e+00]
 [-2.00060393e-01]
 [-9.38918894e-01]
 [ 1.55394617e-01]
 [ 6.31910785e-01]
 [-1.98269993e-01]
 [-8.00913625e-01]
 [-6.20856966e-01]
 [ 1.64681002e+00]
 [ 1.49248533e-01]
 [ 2.05856664e+00]
 [ 2.28501757e-01]
 [ 1.26712150e+00]
 [ 2.20072239e+00]
 [ 5.81895837e-01]
 [ 1.06678143e-01]
 [-1.65841961e+00]
 [-1.56672936e+00]
 [ 2.90378758e+00]
 [ 7.13023519e-01]
 [ 4.16240180e-01]
 [ 4.62021431e-02]
 [ 8.60391305e-01]
 [ 2.49707361e-01]
 [ 6.66174264e-01]
 [-1.63443218e+00]
 [ 8.37298226e-01]
 [-2.60832143e-01]
 [-1.33690413e+00]
 [-6.87726315e-01]
 [-5.31041667e-01]
 [-1.35290111e+00]
 [ 1.01610162e+00]
 [ 6.55533597e-01]
 [-2.70433334e-01]
 [-2.35219615e-01]
 [-1.75888819e+00]
 [-4.96974980e-01]
 [-1.73030175e+00]
 [-4.24685451e-02]
 [ 1.32843562e+00]
 [-2.37166763e+00]
 [ 1.15280234e+00]
 [-1.42122878e+00]
 [ 8.11785345e-02]
 [ 8.19612421e-01]
 [-8.10324318e-02]
 [-1.25420996e+00]
 [-5.80349398e-01]
 [ 5.63437412e-01]
 [ 3.68698998e-01]
 [-4.32464214e-01]
 [ 7.62099838e-02]
 [ 1.73401319e+00]
 [-1.24552882e+00]
 [ 4.18891453e-01]
 [ 5.67174434e-01]
 [-1.04944480e-01]
 [-1.34731409e+00]
 [ 2.21294924e+00]
 [-1.28471417e+00]
 [ 1.25266601e-01]
 [-1.44224174e+00]
 [ 6.94186682e-01]
 [ 1.60084914e+00]
 [ 2.67248641e-01]
 [-1.03952728e+00]
 [ 2.99739857e+00]
 [-1.02794271e+00]
 [ 1.79446876e-01]
 [ 2.12152257e+00]
 [ 2.75108497e+00]
 [-2.37792113e-01]
 [-1.19692643e+00]
 [ 8.44240581e-03]
 [ 1.38150735e+00]
 [ 4.76567951e-01]
 [ 2.30817722e-01]
 [-3.63383497e-01]
 [ 8.60257816e-01]
 [ 1.33933041e+00]
 [-2.33511323e+00]
 [ 6.41327648e-01]
 [-5.97981270e-01]
 [ 7.06612394e-03]
 [ 1.78549835e+00]
 [-4.50443316e-01]
 [ 2.46076001e+00]
 [ 3.14286397e+00]
 [ 5.15128810e-01]
 [-7.36301241e-01]
 [-1.53678504e+00]
 [-5.16439953e-01]
 [-1.01638759e+00]
 [-7.14951518e-01]
 [-1.43208616e+00]
 [ 2.97381260e-01]
 [ 4.60258527e-01]
 [ 1.02833264e+00]
 [ 7.20033713e-01]
 [-2.95789628e+00]
 [-2.48030655e+00]
 [-5.25886784e-01]
 [-1.03345724e+00]
 [ 2.70684733e+00]
 [ 2.27077719e+00]
 [-3.34526528e-01]
 [ 1.85632789e+00]
 [ 8.87559816e-01]
 [-1.28839425e+00]
 [-1.74355748e+00]
 [ 5.82635695e-01]
 [-2.48169766e-01]
 [ 1.86653912e+00]
 [ 1.91423697e+00]
 [-6.60352751e-02]
 [-2.42946132e-01]
 [-1.19462005e+00]
 [-1.53502969e+00]
 [-1.26999357e+00]
 [-6.08695437e-01]
 [-5.27683110e-02]
 [-9.58823996e-01]
 [-1.59605519e+00]
 [ 2.50713959e+00]
 [ 2.31244994e-01]
 [-9.64885912e-01]
 [ 1.65566514e+00]
 [-1.16556071e+00]
 [ 1.14036484e+00]
 [-4.50863671e-01]
 [-1.11290322e+00]
 [ 7.58411586e-01]
 [ 2.10724977e+00]
 [ 1.11431659e+00]
 [ 1.63000004e+00]
 [ 1.27068286e+00]
 [-1.77190314e+00]
 [ 1.89336165e+00]
 [-1.33850008e+00]
 [ 2.35563680e-01]
 [-2.14887731e+00]
 [ 9.57504839e-01]
 [ 5.94126455e-02]
 [ 7.78023301e-01]
 [ 8.33093082e-02]
 [-3.74606796e-01]
 [-1.16487681e+00]
 [ 1.59009255e+00]
 [ 1.80771965e+00]
 [-1.12090536e-01]
 [ 1.72760476e+00]
 [-3.25051722e-01]
 [-1.41500859e+00]
 [ 2.10646634e+00]
 [-9.18720227e-01]
 [ 2.09695993e+00]
 [-1.13254653e+00]
 [-1.38245096e+00]
 [ 1.27808119e+00]
 [-1.27616927e+00]
 [ 1.87341790e-01]
 [-8.75253440e-01]
 [ 1.36278834e+00]
 [-2.56058432e-01]
 [ 3.19885136e-01]
 [-1.76746338e+00]
 [ 6.75854994e-02]
 [-8.54493505e-01]
 [-1.79006175e+00]
 [-3.79361869e-01]
 [-3.16685196e-02]
 [ 4.17079705e-01]
 [ 1.89624404e+00]
 [-4.18415837e+00]
 [-2.05042882e+00]
 [ 1.11891988e-01]
 [-8.26401841e-01]
 [ 3.89660783e-02]
 [ 4.18491480e-01]
 [-9.90051172e-01]
 [-2.99557217e-01]]
输出内容展开
In [9]:
X_train_lda.shape
Out[9]:
(614, 1)
如果 n_components 的值是None,那么其值被设置为 min(n_classes - 1, n_features),即 min(1,8) = 1
In [10]:
X_test_lda = lda.transform(X_test)
X_test_lda
Out[10]:
array([[-1.60467539],
       [-0.54969838],
       [-1.12206744],
       [-0.2307614 ],
       [ 0.91932074],
       [-0.9453779 ],
       [-1.37419031],
       [ 0.42135617],
       [-1.61099597],
       [ 0.82831279],
       [ 0.17838866],
       [ 0.29813002],
       [ 1.31341755],
       [-0.53776713],
       [-2.27658875],
       [ 1.73281941],
       [ 1.97332988],
       [-1.88303933],
       [-0.209353  ],
       [ 2.17460238],
       [ 2.75433054],
       [ 1.74832377],
       [-0.90042382],
       [ 0.30119646],
       [-1.10762802],
       [-1.39660502],
       [ 0.95576581],
       [ 0.27749218],
       [-0.54955422],
       [-0.12667065],
       [-0.21771912],
       [ 0.35106332],
       [-2.62136525],
       [-0.31951318],
       [ 0.1690599 ],
       [ 2.98109784],
       [ 0.04147731],
       [ 1.59721976],
       [-0.06088512],
       [-1.51278178],
       [-0.5315911 ],
       [-1.2186132 ],
       [ 0.383099  ],
       [-0.52068249],
       [-1.95545784],
       [-1.70670076],
       [-0.25108479],
       [ 0.35668893],
       [-1.05845692],
       [ 0.27414828],
       [ 4.20063483],
       [-0.9429675 ],
       [ 0.23691857],
       [ 1.47044517],
       [ 0.18558897],
       [ 0.46446228],
       [ 2.72573226],
       [ 0.34777019],
       [ 0.18384959],
       [-1.64900368],
       [ 0.1935939 ],
       [ 2.11142097],
       [ 1.97084855],
       [ 2.14582855],
       [ 0.02640709],
       [-1.07955765],
       [ 2.79750127],
       [-0.38484886],
       [-0.15820474],
       [ 0.08456496],
       [-1.02076631],
       [-1.24202773],
       [ 0.47700638],
       [-1.10356392],
       [-1.13650064],
       [ 0.62166903],
       [ 0.1552929 ],
       [-1.24288166],
       [-0.32134212],
       [-0.27604553],
       [-1.60876309],
       [-0.37116888],
       [-1.42618373],
       [-0.33389981],
       [ 1.17440042],
       [-0.04360507],
       [-1.05621687],
       [-0.98830673],
       [-0.46398678],
       [ 0.86559721],
       [-0.89685648],
       [-0.1900513 ],
       [-0.47231441],
       [-1.63402045],
       [-0.58684382],
       [ 1.26580498],
       [-0.00456354],
       [ 0.79176022],
       [ 1.22020175],
       [-1.65008429],
       [ 0.45008263],
       [ 0.81952325],
       [-0.97525438],
       [-1.18703817],
       [-0.56623865],
       [-1.04071217],
       [ 3.21066554],
       [-0.72887389],
       [-0.99124524],
       [-4.20525965],
       [-1.73441591],
       [-0.15464027],
       [ 0.32631244],
       [-1.36694546],
       [-0.16897841],
       [ 1.46783557],
       [ 0.28316526],
       [-0.25870976],
       [-0.79050932],
       [-0.86808187],
       [-2.41534815],
       [-0.16271327],
       [-0.99406614],
       [-0.8221322 ],
       [-0.09825589],
       [ 2.02265651],
       [-0.8596007 ],
       [ 0.51713851],
       [ 0.24236981],
       [ 0.39841078],
       [ 1.01361551],
       [-0.20272853],
       [ 0.37300882],
       [-1.5802361 ],
       [ 1.05843709],
       [ 1.10599465],
       [-0.01991832],
       [ 0.14456892],
       [-0.56400755],
       [ 0.74296475],
       [-0.71388053],
       [ 1.15764504],
       [-0.68104578],
       [-0.02367192],
       [-0.40098541],
       [-0.45004564],
       [-1.80451501],
       [ 0.67611791],
       [-1.84718826],
       [-0.84972083],
       [-1.27350394],
       [-0.33970734],
       [ 0.96318898],
       [-2.19867349]])
输出内容展开

4.2 验证 X_train_lda 的由来

In [11]:
X_train.shape
Out[11]:
(614, 8)
In [12]:
# 转换系数
scalings = lda.scalings_
In [13]:
scalings
Out[13]:
array([[ 0.39080505],
       [ 0.89927753],
       [-0.20677034],
       [ 0.05229989],
       [-0.11880669],
       [ 0.4427192 ],
       [ 0.24199309],
       [ 0.06543184]])
In [14]:
verify_matrix = X_train.dot(scalings)
In [15]:
verify_matrix
Out[15]:
array([[-7.09580575e-01],
       [-1.25232619e+00],
       [-7.59813997e-01],
       [ 2.24487957e+00],
       [-1.83472235e+00],
       [ 1.72713900e+00],
       [-7.01671717e-01],
       [-3.75717668e+00],
       [-4.42372899e-02],
       [-1.44707200e+00],
       [-3.64381132e-01],
       [-1.22559889e+00],
       [-4.34165087e-01],
       [ 2.62545954e+00],
       [ 5.29809659e-02],
       [-1.28741643e+00],
       [-1.33326464e-01],
       [ 1.32496639e+00],
       [-8.41212474e-01],
       [-5.80913765e-01],
       [-9.31947468e-01],
       [-4.71240842e-01],
       [ 6.01506952e-01],
       [ 8.09658116e-02],
       [-5.36135643e-01],
       [-1.24878685e+00],
       [-8.74004230e-01],
       [-1.38735113e+00],
       [ 1.87812923e+00],
       [ 3.34056050e-01],
       [-1.65936332e+00],
       [-1.55708389e+00],
       [-1.03447627e+00],
       [ 2.78128145e-01],
       [-1.07863887e+00],
       [ 9.24997670e-01],
       [-4.40200308e-01],
       [-7.82628235e-01],
       [ 6.24893963e-01],
       [ 1.37482261e+00],
       [ 4.83817890e-01],
       [ 1.18420457e-01],
       [ 1.93598829e-01],
       [-1.38235717e-01],
       [-4.45815683e-01],
       [-1.73559267e+00],
       [-4.53253421e-01],
       [ 1.36693114e+00],
       [-1.11857616e+00],
       [-9.27818986e-01],
       [ 9.03495498e-01],
       [-2.08423086e-01],
       [ 1.09073837e+00],
       [-1.78992797e-01],
       [-1.81685894e-01],
       [ 1.55669292e+00],
       [ 1.70649911e+00],
       [-8.30370459e-01],
       [ 1.74389260e+00],
       [-4.38333981e-01],
       [-1.32175889e+00],
       [-1.17902590e+00],
       [-1.27970387e+00],
       [ 2.64997197e-01],
       [ 1.83927441e+00],
       [ 2.87603583e+00],
       [ 1.32747827e+00],
       [-1.23317807e+00],
       [-6.38667579e-01],
       [-2.49730690e+00],
       [-7.50335687e-01],
       [ 1.13819241e+00],
       [-1.51819792e+00],
       [ 3.48699578e-01],
       [ 2.07291912e+00],
       [ 1.18872205e+00],
       [-1.26752930e+00],
       [-9.61061338e-01],
       [-1.48481631e+00],
       [-6.16788749e-01],
       [ 1.00107373e+00],
       [ 1.64183047e+00],
       [ 7.62485249e-01],
       [-9.05966168e-01],
       [-1.76583480e+00],
       [ 1.15119270e+00],
       [-5.71248022e-01],
       [ 2.82671522e-01],
       [ 1.58923966e+00],
       [ 3.89370865e-02],
       [ 6.95987190e-04],
       [ 2.38587148e-02],
       [ 4.33294099e-01],
       [-1.61807242e+00],
       [-3.75036587e-02],
       [ 1.45518668e+00],
       [-9.09626996e-01],
       [-9.00170742e-01],
       [ 2.02443108e+00],
       [-6.88335740e-01],
       [ 2.33687536e+00],
       [-2.14774953e-01],
       [ 4.22766244e-01],
       [-7.44887303e-01],
       [ 1.78782795e-02],
       [-1.05789594e+00],
       [-1.48150473e+00],
       [-1.45801198e+00],
       [ 2.11355083e+00],
       [-5.60956835e-01],
       [-7.99557384e-01],
       [-2.53714672e+00],
       [ 1.15827139e-01],
       [-2.85981257e-01],
       [ 1.20870045e-01],
       [-1.50249259e-01],
       [ 1.28325311e+00],
       [-9.10469484e-01],
       [-2.04100810e-01],
       [ 3.04926411e-01],
       [-6.13533181e-01],
       [-1.13799972e+00],
       [ 1.85069640e+00],
       [-9.52159360e-01],
       [-1.07072549e+00],
       [ 1.54132020e+00],
       [-2.25155103e-01],
       [ 9.42723622e-01],
       [ 2.33261633e+00],
       [-2.50335599e+00],
       [-1.71081917e+00],
       [-5.69055863e-01],
       [-7.86551181e-02],
       [ 8.59624336e-01],
       [-1.27175612e+00],
       [-7.32892454e-01],
       [ 1.62806827e+00],
       [-1.73505213e+00],
       [ 5.89219216e-01],
       [ 9.61940538e-01],
       [ 1.21978497e+00],
       [-1.23402059e-01],
       [ 5.58089135e-01],
       [-1.97372406e+00],
       [-3.54738583e-01],
       [ 1.07679503e+00],
       [ 3.30921389e-02],
       [ 3.51641156e+00],
       [ 2.01319999e+00],
       [-4.79608603e-01],
       [-1.54500904e+00],
       [ 7.28837498e-01],
       [-7.68164175e-01],
       [ 6.03755150e-01],
       [-5.79291694e-01],
       [ 1.09312454e+00],
       [-7.60263201e-01],
       [ 6.99167689e-01],
       [ 1.37164718e+00],
       [ 1.31225828e+00],
       [-8.40653172e-01],
       [ 2.91430119e-02],
       [-8.29551054e-01],
       [-8.52135872e-01],
       [ 2.42179542e+00],
       [ 1.19833768e-01],
       [ 1.34468182e+00],
       [ 3.31802548e-01],
       [ 8.84131097e-01],
       [-1.08418018e+00],
       [ 3.16804052e-01],
       [ 1.95699099e-01],
       [ 1.18224504e+00],
       [-4.76551929e-02],
       [ 2.32738728e-01],
       [ 2.17302678e-01],
       [-5.89237273e-01],
       [ 1.85849443e-01],
       [-1.54979285e+00],
       [ 9.82798488e-01],
       [-5.83740225e-01],
       [-6.00824976e-01],
       [ 1.74716312e+00],
       [-8.40349063e-01],
       [-1.92108538e-01],
       [-6.60931850e-01],
       [-1.09416397e+00],
       [ 1.07363466e+00],
       [-7.56504146e-01],
       [ 4.81118721e-01],
       [ 4.58322441e-02],
       [-5.30149132e-02],
       [-9.83533399e-01],
       [-1.18611803e+00],
       [ 8.97981571e-01],
       [-1.38655961e+00],
       [ 8.65977388e-02],
       [-1.29923057e+00],
       [-2.00106616e-01],
       [-8.84903649e-01],
       [-1.01814576e+00],
       [-6.73380309e-01],
       [-2.57345929e-01],
       [-6.09999516e-01],
       [-9.99780327e-01],
       [ 1.42422789e+00],
       [-2.44448484e-01],
       [-1.13703421e+00],
       [-6.42258506e-01],
       [ 2.25918605e-01],
       [ 5.65663441e-01],
       [ 1.23524077e-01],
       [ 1.08528225e+00],
       [ 2.19363184e+00],
       [ 1.01163253e+00],
       [-7.94344125e-01],
       [-9.53004876e-01],
       [ 7.66628719e-01],
       [ 2.17274216e+00],
       [ 1.40669491e-01],
       [ 5.94159896e-01],
       [-5.55446317e-01],
       [ 3.51591179e-01],
       [ 1.50546591e+00],
       [ 5.66679498e-01],
       [ 3.85443340e-01],
       [-1.15721046e+00],
       [ 1.92121722e+00],
       [ 5.79754177e-01],
       [ 1.61088688e-01],
       [ 6.40910989e-02],
       [-4.15781837e-03],
       [ 1.20911354e+00],
       [ 5.81706676e-01],
       [ 9.29316806e-01],
       [-6.49635760e-01],
       [-1.29028128e+00],
       [ 1.19743896e+00],
       [ 1.73958239e+00],
       [ 1.06273540e+00],
       [-5.78708212e-01],
       [-5.91652462e-01],
       [-1.06403705e+00],
       [ 8.48748221e-01],
       [ 1.84245259e+00],
       [-1.12241556e+00],
       [-3.92319922e-01],
       [-5.06398050e-01],
       [-8.01740487e-01],
       [ 2.81827862e-01],
       [-3.73194844e-01],
       [ 1.27356384e-01],
       [ 1.38348151e+00],
       [-1.95791710e+00],
       [-1.69343253e+00],
       [ 1.57912787e+00],
       [ 1.56905793e+00],
       [-4.81162123e-01],
       [ 7.14304828e-01],
       [ 1.67063463e+00],
       [-7.24911993e-01],
       [ 1.00982197e+00],
       [-1.99039022e-01],
       [-9.26955565e-01],
       [ 2.98929969e+00],
       [ 2.66203782e-01],
       [-1.90022216e-01],
       [ 1.21421832e+00],
       [ 1.48219197e+00],
       [ 4.29338339e-01],
       [ 1.25202834e+00],
       [ 2.31888566e+00],
       [-1.81524331e-01],
       [ 4.03757358e-01],
       [-2.37300773e+00],
       [-5.05502452e-01],
       [ 1.57620164e+00],
       [-7.44501998e-01],
       [-2.78989955e+00],
       [-7.48811082e-01],
       [ 9.34453007e-03],
       [-8.86760850e-01],
       [ 2.40821378e+00],
       [ 7.52828238e-01],
       [ 1.01930801e+00],
       [-1.11676970e+00],
       [ 1.16286127e+00],
       [-1.38072161e+00],
       [ 5.06045144e-02],
       [ 1.28447844e+00],
       [ 1.10147534e+00],
       [-6.99471941e-01],
       [-3.95475313e-01],
       [-2.33814898e+00],
       [-5.58885514e-01],
       [-1.62515502e+00],
       [-4.80031790e-02],
       [-1.22933421e+00],
       [-1.43289330e+00],
       [ 3.82368455e-01],
       [-4.78784838e-01],
       [ 3.11226395e+00],
       [-2.19872519e-01],
       [-8.66012695e-02],
       [-8.61030811e-01],
       [-1.79659712e-02],
       [ 5.63343238e-01],
       [ 1.15772339e-01],
       [ 1.33832964e+00],
       [-9.20451870e-01],
       [-1.94203663e+00],
       [-2.10981127e+00],
       [-8.96254271e-01],
       [-1.01096412e+00],
       [-7.96968176e-01],
       [ 1.53526922e+00],
       [ 2.96828601e+00],
       [-2.37340281e+00],
       [-5.39905276e-01],
       [ 8.05031504e-03],
       [ 6.19929863e-02],
       [-4.07763181e-01],
       [-7.69899804e-01],
       [-1.06445126e-01],
       [ 2.44923107e+00],
       [-8.64897290e-01],
       [-9.61107269e-01],
       [ 1.12928198e+00],
       [-6.93799633e-01],
       [ 9.12263450e-02],
       [-1.65662030e+00],
       [ 1.23445066e+00],
       [-2.29989521e+00],
       [-6.67210528e-01],
       [ 1.39505120e+00],
       [-5.90146656e-01],
       [ 1.91599297e+00],
       [-3.07105657e-02],
       [-1.86495725e+00],
       [-4.10045496e-03],
       [ 1.95146853e+00],
       [-6.63388932e-01],
       [-1.25932062e-01],
       [-1.95617520e+00],
       [-7.24067222e-01],
       [ 1.68597191e+00],
       [ 7.67739195e-01],
       [ 1.50844457e+00],
       [-1.39040166e+00],
       [-5.28317583e-01],
       [-7.98163950e-01],
       [-2.05966934e+00],
       [-5.00389045e-01],
       [-3.08430392e-01],
       [-4.55409643e-01],
       [ 1.22705948e-01],
       [-6.42465319e-01],
       [-5.16243197e-01],
       [-1.36050953e+00],
       [-5.87265409e-01],
       [ 4.00535897e-01],
       [-2.11442799e-01],
       [-2.42412529e-02],
       [-1.86695525e+00],
       [-3.71845160e-01],
       [ 1.66009450e+00],
       [-3.22778860e-01],
       [-4.78111890e-01],
       [-9.44115662e-01],
       [-1.77911788e-01],
       [ 3.24741813e-01],
       [ 2.61166483e+00],
       [ 6.15827866e-01],
       [ 1.62305833e+00],
       [ 6.56975069e-01],
       [ 1.07649474e+00],
       [ 8.93244246e-01],
       [ 2.37038946e+00],
       [-1.00074397e+00],
       [-6.94135081e-02],
       [ 1.90692835e+00],
       [-4.16046203e-01],
       [-2.97009267e-01],
       [ 1.12324933e-02],
       [-1.73948585e+00],
       [ 1.83169245e+00],
       [-7.15739584e-01],
       [ 2.84526872e-01],
       [-2.08984309e-01],
       [ 6.05826777e-01],
       [-5.55760348e-02],
       [-1.60536248e+00],
       [-1.94578868e-01],
       [ 4.14010014e-01],
       [-4.67234277e-01],
       [-1.15041532e+00],
       [ 7.12527823e-01],
       [-1.13330316e+00],
       [-1.86227991e-01],
       [ 1.23994415e+00],
       [-4.75961697e-01],
       [-6.50655572e-01],
       [ 1.39405031e-01],
       [-1.36545193e-01],
       [-1.31667319e+00],
       [-1.32598029e+00],
       [ 2.76684219e+00],
       [-4.30281832e-01],
       [-1.12095251e+00],
       [ 9.24204330e-01],
       [ 8.88934406e-01],
       [-7.26751047e-01],
       [-1.51174785e+00],
       [ 1.02899443e+00],
       [-9.73167110e-01],
       [-5.71899107e-01],
       [ 1.33454081e-01],
       [ 1.34722884e+00],
       [ 6.89644744e-01],
       [ 5.02219295e-01],
       [ 3.37284935e-02],
       [ 6.68072083e-01],
       [-9.99431928e-01],
       [-6.88682252e-02],
       [ 5.87800737e-01],
       [ 1.13551804e+00],
       [-9.69739531e-01],
       [ 1.35179142e+00],
       [-6.42954624e-01],
       [-2.86754040e+00],
       [ 2.68309817e+00],
       [-1.47644791e-01],
       [ 1.24845834e+00],
       [-2.00060393e-01],
       [-9.38918894e-01],
       [ 1.55394617e-01],
       [ 6.31910785e-01],
       [-1.98269993e-01],
       [-8.00913625e-01],
       [-6.20856966e-01],
       [ 1.64681002e+00],
       [ 1.49248533e-01],
       [ 2.05856664e+00],
       [ 2.28501757e-01],
       [ 1.26712150e+00],
       [ 2.20072239e+00],
       [ 5.81895837e-01],
       [ 1.06678143e-01],
       [-1.65841961e+00],
       [-1.56672936e+00],
       [ 2.90378758e+00],
       [ 7.13023519e-01],
       [ 4.16240180e-01],
       [ 4.62021431e-02],
       [ 8.60391305e-01],
       [ 2.49707361e-01],
       [ 6.66174264e-01],
       [-1.63443218e+00],
       [ 8.37298226e-01],
       [-2.60832143e-01],
       [-1.33690413e+00],
       [-6.87726315e-01],
       [-5.31041667e-01],
       [-1.35290111e+00],
       [ 1.01610162e+00],
       [ 6.55533597e-01],
       [-2.70433334e-01],
       [-2.35219615e-01],
       [-1.75888819e+00],
       [-4.96974980e-01],
       [-1.73030175e+00],
       [-4.24685451e-02],
       [ 1.32843562e+00],
       [-2.37166763e+00],
       [ 1.15280234e+00],
       [-1.42122878e+00],
       [ 8.11785345e-02],
       [ 8.19612421e-01],
       [-8.10324318e-02],
       [-1.25420996e+00],
       [-5.80349398e-01],
       [ 5.63437412e-01],
       [ 3.68698998e-01],
       [-4.32464214e-01],
       [ 7.62099838e-02],
       [ 1.73401319e+00],
       [-1.24552882e+00],
       [ 4.18891453e-01],
       [ 5.67174434e-01],
       [-1.04944480e-01],
       [-1.34731409e+00],
       [ 2.21294924e+00],
       [-1.28471417e+00],
       [ 1.25266601e-01],
       [-1.44224174e+00],
       [ 6.94186682e-01],
       [ 1.60084914e+00],
       [ 2.67248641e-01],
       [-1.03952728e+00],
       [ 2.99739857e+00],
       [-1.02794271e+00],
       [ 1.79446876e-01],
       [ 2.12152257e+00],
       [ 2.75108497e+00],
       [-2.37792113e-01],
       [-1.19692643e+00],
       [ 8.44240581e-03],
       [ 1.38150735e+00],
       [ 4.76567951e-01],
       [ 2.30817722e-01],
       [-3.63383497e-01],
       [ 8.60257816e-01],
       [ 1.33933041e+00],
       [-2.33511323e+00],
       [ 6.41327648e-01],
       [-5.97981270e-01],
       [ 7.06612394e-03],
       [ 1.78549835e+00],
       [-4.50443316e-01],
       [ 2.46076001e+00],
       [ 3.14286397e+00],
       [ 5.15128810e-01],
       [-7.36301241e-01],
       [-1.53678504e+00],
       [-5.16439953e-01],
       [-1.01638759e+00],
       [-7.14951518e-01],
       [-1.43208616e+00],
       [ 2.97381260e-01],
       [ 4.60258527e-01],
       [ 1.02833264e+00],
       [ 7.20033713e-01],
       [-2.95789628e+00],
       [-2.48030655e+00],
       [-5.25886784e-01],
       [-1.03345724e+00],
       [ 2.70684733e+00],
       [ 2.27077719e+00],
       [-3.34526528e-01],
       [ 1.85632789e+00],
       [ 8.87559816e-01],
       [-1.28839425e+00],
       [-1.74355748e+00],
       [ 5.82635695e-01],
       [-2.48169766e-01],
       [ 1.86653912e+00],
       [ 1.91423697e+00],
       [-6.60352751e-02],
       [-2.42946132e-01],
       [-1.19462005e+00],
       [-1.53502969e+00],
       [-1.26999357e+00],
       [-6.08695437e-01],
       [-5.27683110e-02],
       [-9.58823996e-01],
       [-1.59605519e+00],
       [ 2.50713959e+00],
       [ 2.31244994e-01],
       [-9.64885912e-01],
       [ 1.65566514e+00],
       [-1.16556071e+00],
       [ 1.14036484e+00],
       [-4.50863671e-01],
       [-1.11290322e+00],
       [ 7.58411586e-01],
       [ 2.10724977e+00],
       [ 1.11431659e+00],
       [ 1.63000004e+00],
       [ 1.27068286e+00],
       [-1.77190314e+00],
       [ 1.89336165e+00],
       [-1.33850008e+00],
       [ 2.35563680e-01],
       [-2.14887731e+00],
       [ 9.57504839e-01],
       [ 5.94126455e-02],
       [ 7.78023301e-01],
       [ 8.33093082e-02],
       [-3.74606796e-01],
       [-1.16487681e+00],
       [ 1.59009255e+00],
       [ 1.80771965e+00],
       [-1.12090536e-01],
       [ 1.72760476e+00],
       [-3.25051722e-01],
       [-1.41500859e+00],
       [ 2.10646634e+00],
       [-9.18720227e-01],
       [ 2.09695993e+00],
       [-1.13254653e+00],
       [-1.38245096e+00],
       [ 1.27808119e+00],
       [-1.27616927e+00],
       [ 1.87341790e-01],
       [-8.75253440e-01],
       [ 1.36278834e+00],
       [-2.56058432e-01],
       [ 3.19885136e-01],
       [-1.76746338e+00],
       [ 6.75854994e-02],
       [-8.54493505e-01],
       [-1.79006175e+00],
       [-3.79361869e-01],
       [-3.16685196e-02],
       [ 4.17079705e-01],
       [ 1.89624404e+00],
       [-4.18415837e+00],
       [-2.05042882e+00],
       [ 1.11891988e-01],
       [-8.26401841e-01],
       [ 3.89660783e-02],
       [ 4.18491480e-01],
       [-9.90051172e-01],
       [-2.99557217e-01]])
输出内容展开

 

5. 构建逻辑回归模型

5.1 使用原始数据构建逻辑回归模型

In [16]:
# 构建模型
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(penalty='l2', C=1, class_weight='balanced', random_state = 0)
classifier.fit(X_train, y_train)
Out[16]:
LogisticRegression(C=1, class_weight='balanced', random_state=0)
In [17]:
# 预测测试集
y_pred = classifier.predict(X_test)
In [18]:
# 评估模型性能
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
0.7532467532467533
In [19]:
# 评估模型性能
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

           0       0.87      0.76      0.81       109
           1       0.56      0.73      0.63        45

    accuracy                           0.75       154
   macro avg       0.72      0.75      0.72       154
weighted avg       0.78      0.75      0.76       154

5.2 使用降维后数据构建逻辑回归模型

In [20]:
# 构建模型
classifier = LogisticRegression(penalty='l2', C=1,
                                class_weight='balanced', random_state = 0)
classifier.fit(X_train_lda, y_train)
Out[20]:
LogisticRegression(C=1, class_weight='balanced', random_state=0)
In [21]:
# 预测测试集
y_pred = classifier.predict(X_test_lda)
In [27]:
X_test_lda
Out[27]:
array([[-1.60467539,  1.        ],
       [-0.54969838,  1.        ],
       [-1.12206744,  1.        ],
       [-0.2307614 ,  1.        ],
       [ 0.91932074,  1.        ],
       [-0.9453779 ,  1.        ],
       [-1.37419031,  1.        ],
       [ 0.42135617,  1.        ],
       [-1.61099597,  1.        ],
       [ 0.82831279,  1.        ],
       [ 0.17838866,  1.        ],
       [ 0.29813002,  1.        ],
       [ 1.31341755,  1.        ],
       [-0.53776713,  1.        ],
       [-2.27658875,  1.        ],
       [ 1.73281941,  1.        ],
       [ 1.97332988,  1.        ],
       [-1.88303933,  1.        ],
       [-0.209353  ,  1.        ],
       [ 2.17460238,  1.        ],
       [ 2.75433054,  1.        ],
       [ 1.74832377,  1.        ],
       [-0.90042382,  1.        ],
       [ 0.30119646,  1.        ],
       [-1.10762802,  1.        ],
       [-1.39660502,  1.        ],
       [ 0.95576581,  1.        ],
       [ 0.27749218,  1.        ],
       [-0.54955422,  1.        ],
       [-0.12667065,  1.        ],
       [-0.21771912,  1.        ],
       [ 0.35106332,  1.        ],
       [-2.62136525,  1.        ],
       [-0.31951318,  1.        ],
       [ 0.1690599 ,  1.        ],
       [ 2.98109784,  1.        ],
       [ 0.04147731,  1.        ],
       [ 1.59721976,  1.        ],
       [-0.06088512,  1.        ],
       [-1.51278178,  1.        ],
       [-0.5315911 ,  1.        ],
       [-1.2186132 ,  1.        ],
       [ 0.383099  ,  1.        ],
       [-0.52068249,  1.        ],
       [-1.95545784,  1.        ],
       [-1.70670076,  1.        ],
       [-0.25108479,  1.        ],
       [ 0.35668893,  1.        ],
       [-1.05845692,  1.        ],
       [ 0.27414828,  1.        ],
       [ 4.20063483,  1.        ],
       [-0.9429675 ,  1.        ],
       [ 0.23691857,  1.        ],
       [ 1.47044517,  1.        ],
       [ 0.18558897,  1.        ],
       [ 0.46446228,  1.        ],
       [ 2.72573226,  1.        ],
       [ 0.34777019,  1.        ],
       [ 0.18384959,  1.        ],
       [-1.64900368,  1.        ],
       [ 0.1935939 ,  1.        ],
       [ 2.11142097,  1.        ],
       [ 1.97084855,  1.        ],
       [ 2.14582855,  1.        ],
       [ 0.02640709,  1.        ],
       [-1.07955765,  1.        ],
       [ 2.79750127,  1.        ],
       [-0.38484886,  1.        ],
       [-0.15820474,  1.        ],
       [ 0.08456496,  1.        ],
       [-1.02076631,  1.        ],
       [-1.24202773,  1.        ],
       [ 0.47700638,  1.        ],
       [-1.10356392,  1.        ],
       [-1.13650064,  1.        ],
       [ 0.62166903,  1.        ],
       [ 0.1552929 ,  1.        ],
       [-1.24288166,  1.        ],
       [-0.32134212,  1.        ],
       [-0.27604553,  1.        ],
       [-1.60876309,  1.        ],
       [-0.37116888,  1.        ],
       [-1.42618373,  1.        ],
       [-0.33389981,  1.        ],
       [ 1.17440042,  1.        ],
       [-0.04360507,  1.        ],
       [-1.05621687,  1.        ],
       [-0.98830673,  1.        ],
       [-0.46398678,  1.        ],
       [ 0.86559721,  1.        ],
       [-0.89685648,  1.        ],
       [-0.1900513 ,  1.        ],
       [-0.47231441,  1.        ],
       [-1.63402045,  1.        ],
       [-0.58684382,  1.        ],
       [ 1.26580498,  1.        ],
       [-0.00456354,  1.        ],
       [ 0.79176022,  1.        ],
       [ 1.22020175,  1.        ],
       [-1.65008429,  1.        ],
       [ 0.45008263,  1.        ],
       [ 0.81952325,  1.        ],
       [-0.97525438,  1.        ],
       [-1.18703817,  1.        ],
       [-0.56623865,  1.        ],
       [-1.04071217,  1.        ],
       [ 3.21066554,  1.        ],
       [-0.72887389,  1.        ],
       [-0.99124524,  1.        ],
       [-4.20525965,  1.        ],
       [-1.73441591,  1.        ],
       [-0.15464027,  1.        ],
       [ 0.32631244,  1.        ],
       [-1.36694546,  1.        ],
       [-0.16897841,  1.        ],
       [ 1.46783557,  1.        ],
       [ 0.28316526,  1.        ],
       [-0.25870976,  1.        ],
       [-0.79050932,  1.        ],
       [-0.86808187,  1.        ],
       [-2.41534815,  1.        ],
       [-0.16271327,  1.        ],
       [-0.99406614,  1.        ],
       [-0.8221322 ,  1.        ],
       [-0.09825589,  1.        ],
       [ 2.02265651,  1.        ],
       [-0.8596007 ,  1.        ],
       [ 0.51713851,  1.        ],
       [ 0.24236981,  1.        ],
       [ 0.39841078,  1.        ],
       [ 1.01361551,  1.        ],
       [-0.20272853,  1.        ],
       [ 0.37300882,  1.        ],
       [-1.5802361 ,  1.        ],
       [ 1.05843709,  1.        ],
       [ 1.10599465,  1.        ],
       [-0.01991832,  1.        ],
       [ 0.14456892,  1.        ],
       [-0.56400755,  1.        ],
       [ 0.74296475,  1.        ],
       [-0.71388053,  1.        ],
       [ 1.15764504,  1.        ],
       [-0.68104578,  1.        ],
       [-0.02367192,  1.        ],
       [-0.40098541,  1.        ],
       [-0.45004564,  1.        ],
       [-1.80451501,  1.        ],
       [ 0.67611791,  1.        ],
       [-1.84718826,  1.        ],
       [-0.84972083,  1.        ],
       [-1.27350394,  1.        ],
       [-0.33970734,  1.        ],
       [ 0.96318898,  1.        ],
       [-2.19867349,  1.        ]])
输出内容展开
In [22]:
# 评估模型性能
print(accuracy_score(y_test, y_pred))
0.7597402597402597
In [23]:
# 评估模型性能
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

           0       0.88      0.77      0.82       109
           1       0.57      0.73      0.64        45

    accuracy                           0.76       154
   macro avg       0.72      0.75      0.73       154
weighted avg       0.79      0.76      0.77       154
 

6. 可视化LDA降维效果

由于X_test_lda是1维的。为了可视化,为X_test_lda扩展1维
In [24]:
# X_test_lda 扩展1维
to_insert = np.ones((X_test_lda.shape[0],1))
X_test_lda = np.c_[X_test_lda, to_insert]
In [25]:
X_test_lda
Out[25]:
array([[-1.60467539,  1.        ],
       [-0.54969838,  1.        ],
       [-1.12206744,  1.        ],
       [-0.2307614 ,  1.        ],
       [ 0.91932074,  1.        ],
       [-0.9453779 ,  1.        ],
       [-1.37419031,  1.        ],
       [ 0.42135617,  1.        ],
       [-1.61099597,  1.        ],
       [ 0.82831279,  1.        ],
       [ 0.17838866,  1.        ],
       [ 0.29813002,  1.        ],
       [ 1.31341755,  1.        ],
       [-0.53776713,  1.        ],
       [-2.27658875,  1.        ],
       [ 1.73281941,  1.        ],
       [ 1.97332988,  1.        ],
       [-1.88303933,  1.        ],
       [-0.209353  ,  1.        ],
       [ 2.17460238,  1.        ],
       [ 2.75433054,  1.        ],
       [ 1.74832377,  1.        ],
       [-0.90042382,  1.        ],
       [ 0.30119646,  1.        ],
       [-1.10762802,  1.        ],
       [-1.39660502,  1.        ],
       [ 0.95576581,  1.        ],
       [ 0.27749218,  1.        ],
       [-0.54955422,  1.        ],
       [-0.12667065,  1.        ],
       [-0.21771912,  1.        ],
       [ 0.35106332,  1.        ],
       [-2.62136525,  1.        ],
       [-0.31951318,  1.        ],
       [ 0.1690599 ,  1.        ],
       [ 2.98109784,  1.        ],
       [ 0.04147731,  1.        ],
       [ 1.59721976,  1.        ],
       [-0.06088512,  1.        ],
       [-1.51278178,  1.        ],
       [-0.5315911 ,  1.        ],
       [-1.2186132 ,  1.        ],
       [ 0.383099  ,  1.        ],
       [-0.52068249,  1.        ],
       [-1.95545784,  1.        ],
       [-1.70670076,  1.        ],
       [-0.25108479,  1.        ],
       [ 0.35668893,  1.        ],
       [-1.05845692,  1.        ],
       [ 0.27414828,  1.        ],
       [ 4.20063483,  1.        ],
       [-0.9429675 ,  1.        ],
       [ 0.23691857,  1.        ],
       [ 1.47044517,  1.        ],
       [ 0.18558897,  1.        ],
       [ 0.46446228,  1.        ],
       [ 2.72573226,  1.        ],
       [ 0.34777019,  1.        ],
       [ 0.18384959,  1.        ],
       [-1.64900368,  1.        ],
       [ 0.1935939 ,  1.        ],
       [ 2.11142097,  1.        ],
       [ 1.97084855,  1.        ],
       [ 2.14582855,  1.        ],
       [ 0.02640709,  1.        ],
       [-1.07955765,  1.        ],
       [ 2.79750127,  1.        ],
       [-0.38484886,  1.        ],
       [-0.15820474,  1.        ],
       [ 0.08456496,  1.        ],
       [-1.02076631,  1.        ],
       [-1.24202773,  1.        ],
       [ 0.47700638,  1.        ],
       [-1.10356392,  1.        ],
       [-1.13650064,  1.        ],
       [ 0.62166903,  1.        ],
       [ 0.1552929 ,  1.        ],
       [-1.24288166,  1.        ],
       [-0.32134212,  1.        ],
       [-0.27604553,  1.        ],
       [-1.60876309,  1.        ],
       [-0.37116888,  1.        ],
       [-1.42618373,  1.        ],
       [-0.33389981,  1.        ],
       [ 1.17440042,  1.        ],
       [-0.04360507,  1.        ],
       [-1.05621687,  1.        ],
       [-0.98830673,  1.        ],
       [-0.46398678,  1.        ],
       [ 0.86559721,  1.        ],
       [-0.89685648,  1.        ],
       [-0.1900513 ,  1.        ],
       [-0.47231441,  1.        ],
       [-1.63402045,  1.        ],
       [-0.58684382,  1.        ],
       [ 1.26580498,  1.        ],
       [-0.00456354,  1.        ],
       [ 0.79176022,  1.        ],
       [ 1.22020175,  1.        ],
       [-1.65008429,  1.        ],
       [ 0.45008263,  1.        ],
       [ 0.81952325,  1.        ],
       [-0.97525438,  1.        ],
       [-1.18703817,  1.        ],
       [-0.56623865,  1.        ],
       [-1.04071217,  1.        ],
       [ 3.21066554,  1.        ],
       [-0.72887389,  1.        ],
       [-0.99124524,  1.        ],
       [-4.20525965,  1.        ],
       [-1.73441591,  1.        ],
       [-0.15464027,  1.        ],
       [ 0.32631244,  1.        ],
       [-1.36694546,  1.        ],
       [-0.16897841,  1.        ],
       [ 1.46783557,  1.        ],
       [ 0.28316526,  1.        ],
       [-0.25870976,  1.        ],
       [-0.79050932,  1.        ],
       [-0.86808187,  1.        ],
       [-2.41534815,  1.        ],
       [-0.16271327,  1.        ],
       [-0.99406614,  1.        ],
       [-0.8221322 ,  1.        ],
       [-0.09825589,  1.        ],
       [ 2.02265651,  1.        ],
       [-0.8596007 ,  1.        ],
       [ 0.51713851,  1.        ],
       [ 0.24236981,  1.        ],
       [ 0.39841078,  1.        ],
       [ 1.01361551,  1.        ],
       [-0.20272853,  1.        ],
       [ 0.37300882,  1.        ],
       [-1.5802361 ,  1.        ],
       [ 1.05843709,  1.        ],
       [ 1.10599465,  1.        ],
       [-0.01991832,  1.        ],
       [ 0.14456892,  1.        ],
       [-0.56400755,  1.        ],
       [ 0.74296475,  1.        ],
       [-0.71388053,  1.        ],
       [ 1.15764504,  1.        ],
       [-0.68104578,  1.        ],
       [-0.02367192,  1.        ],
       [-0.40098541,  1.        ],
       [-0.45004564,  1.        ],
       [-1.80451501,  1.        ],
       [ 0.67611791,  1.        ],
       [-1.84718826,  1.        ],
       [-0.84972083,  1.        ],
       [-1.27350394,  1.        ],
       [-0.33970734,  1.        ],
       [ 0.96318898,  1.        ],
       [-2.19867349,  1.        ]])
输出内容展开
In [26]:
# 可视化
from matplotlib.colors import ListedColormap
X_set, y_set = X_test_lda, y_test
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                color = ListedColormap(('red', 'blue'))(i), label = j)
plt.title('LDA Viz')
plt.xlabel('LD1')
plt.ylabel('LD2 (Useless)')
plt.legend()
plt.show()

经过LDA降维,自变量由8个变为1个。
肉眼可见,模型性能不错,因为红色的类别集中在左边,蓝色的类别集中在右边。

 

posted @ 2022-03-17 00:05  Theext  阅读(331)  评论(0)    收藏  举报