bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔

http://www.lydsy.com/JudgeOnline/problem.php?id=1019

 

题目中问步骤数,没说最少

可以大胆猜测移动方案唯一

(真的是唯一但不会证)

设f[i][j] 表示 从i号柱子 上把j个盘子移到 g[i][j] 柱子上的步数

初始化:f[0][1]=1,g[0][1] 根据优先级决定

设三根柱子分别为0,1,2

对于每一个f[x][i],

把前i-1个移走,把第i个移走,把前i-1个移回

令y=g[x][i-1],则k=0+1+2-x-y

我们希望 把i-1个移到y上,第i个移到k上,再把i-1个移到k上

但是g[y][i-1]可能不是移到k上

所以对g[y][i-1]进行分类讨论

若g[y][i-1]=k,那么移过去就完成了,此时f[x][i]=f[x][i-1]+1+f[y][i-1]

若g[y][i-1]=x,那么把i-1个移到y上后,把第i个移到k上,

再把 y上的i-1个移到x上,再把k上的第i个移到y上,最后把x上的i-1个移到y上

所以f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[x][i-1]

 

 
#include<cstdio>
#include<iostream>
 
using namespace std;
 
#define N 31
 
long long f[3][N],g[3][N];
 
char c[4]; bool vis[3];
 
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=6;++i)
    {
        scanf("%s,",c);
        if(!vis[c[0]-'A']) vis[c[0]-'A']=true,g[c[0]-'A'][1]=c[1]-'A';
    }
    f[0][1]=f[1][1]=f[2][1]=1;
    int y,k;
    for(int i=2;i<=n;++i)
        for(int x=0;x<3;++x)
        {
            y=g[x][i-1],k=3-x-y;
            if(g[y][i-1]==k) g[x][i]=k,f[x][i]=f[x][i-1]+1+f[y][i-1];
            else g[x][i]=y,f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[x][i-1];
        }
    cout<<f[0][n];
}

 

 

1019: [SHOI2008]汉诺塔

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1832  Solved: 1125
[Submit][Status][Discuss]

Description

  汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,
大的在下面,小的在上面,形成了一个塔状的锥形体。

 

  对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移
动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描
述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到
柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮
助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)
赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到
另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所移
动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计
算按照上述策略操作汉诺塔移动所需要的步骤数。

Input

  输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操
作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。

Output

  只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。

Sample Input

3
AB BC CA BA CB AC

Sample Output

7
posted @ 2017-11-21 20:06  TRTTG  阅读(130)  评论(0编辑  收藏