欢迎来到就算过了一载春秋的博客

不管过了几载春秋,我还是会偶尔想起。

POJ2785 4 Values whose Sum is 0(折半枚举)

题目链接

4 Values whose Sum is 0

Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 29564   Accepted: 9001
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16 -41 -27 
56 30 -36 53 -37 77
-36 30 -75 -46 26 -38 
-10 62 -32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

 

给定各有n个整数的四个数列A,B,C,D。要从每个数列中各取出一个数,使四个数的和为0。求出这样的组合的个数。当一个数列中有多个相同的数字时,把它们作为不同的数字看待。

 

如果直接四层循环做的话复杂度是O(n^{4}),显然不可行。

如果将它们对半分成AB和CD再考虑,就可以快速解决了。先从A、B中取出a、b后,为了使总和为0则需要从C、D中取出c+d=-(a+b)。因此先将从C、D中取数字的n^{2}种组合全部枚举出来,排好序后就能运用二分搜索了。总复杂度为O(n^{2}logn)

 

AC代码:

 1 #include<iostream>
 2 #include<sstream>
 3 #include<algorithm>
 4 #include<string>
 5 #include<cstring>
 6 #include<iomanip>
 7 #include<vector>
 8 #include<cmath>
 9 #include<ctime>
10 #include<stack>
11 #include<queue>
12 #define e 2.71828182
13 #define Pi 3.141592654
14 using namespace std;
15 int CD[4000*4000];
16 int main()
17 {
18     int n,A[4000],B[4000],C[4000],D[4000];
19     cin>>n;
20     for(int i=0;i<n;i++) cin>>A[i]>>B[i]>>C[i]>>D[i];
21     
22     for(int i=0;i<n;i++)
23         for(int j=0;j<n;j++)
24             CD[i*n+j]=C[i]+D[j];
25     sort(CD,CD+n*n);
26     
27     long long ans=0;
28     for(int i=0;i<n;i++)
29         {
30             for(int j=0;j<n;j++)
31             {
32             int AB=-(A[i]+B[j]);
33             //取出C和D中和为AB的部分
34             ans+=upper_bound(CD,CD+n*n,AB)-lower_bound(CD,CD+n*n,AB); 
35         }
36     }
37     cout<<ans;
38 }
View Code

 

posted on 2018-09-19 22:40  就算过了一载春秋  阅读(158)  评论(0)    收藏  举报

导航