4.2122数学强基

4.2021数学强基

椭圆

\(MF_1=r,MF_2=2a-r\)

\((x+c)^2+y^2=r^2,(x-c)^2+y^2=(2a-r)^2\)

分别以两个定点为圆心半径和为定值动圆交点轨迹

\(MF_1=a+m_0-r,MF_2=a-m_0+r\)\(m_0\) 为定值

\(\sqrt{(x+c)^2+y^2}=a+m_0-r,\sqrt{(x-c)^2+y^2}=a-m_0+r\)

\((X+c)^2+Y^2=(a+m_0)^2,(X-x)^2+(Y-y)^2=r^2\),内切

\((X-c)^2+Y^2=(a-m_0)^2,(X-x)^2+(Y-y)^2=r^2\),外切

与两个定圆一个内切一个外切的动圆的圆心轨迹

\(\sqrt{(x-c)^2+y^2}=a-ex,\sqrt{(x+c)^2+y^2}=a+ex\)

到交点距离,一次函数,焦半径

\(\sqrt{(x-c)^2+y^2}=\dfrac{c}{a}(\dfrac{a^2}{c}-x)\)

\(\dfrac{\sqrt{(x-c)^2+y^2}}{\dfrac{a^2}{c}-x}=\dfrac{c}{a}=e\),椭二

\((a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)\)

\(\dfrac{y}{x+a}\dfrac{y}{x-a}=e^2-1,x\neq \plusmn a\)

\(k_1k_2=e^2-1\),椭三

\(MO^2+MF_1MF_2=a^2+b^2\),椭四

\(\dfrac{x}{MF_1-MF_2}=\dfrac{a}{2c}\),分子有理化,椭五

椭圆的复数定义

圆锥(柱)一刀

点积,\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)

posted @ 2024-04-21 16:44  Terdy  阅读(23)  评论(0)    收藏  举报