题解 P5265 多项式反三角函数
这个题很简单,几个板子套一套就做完了,需要了解一些简单微积分。
首先两个结论$$\arcsin'x=\dfrac{1}{\sqrt{1-x^2}}$$$$\arctan'x=\dfrac{1}{1+x^2}$$
证明也很好证,经典隐函数证明。
先看 $\arcsin'x$ 的,设 $\sin y=x$,则
$$\sin'y=x'$$$$y'\cos y=1$$$$y'=\dfrac{1}{\cos y}$$$$y'=\dfrac{1}{\sqrt{1-\sin^2y}}$$$$\arcsin'x=\dfrac{1}{\sqrt{1-x^2}}$$
$\arctan'x$ 同理,设 $\tan y=x$,则$$\tan'y=x'$$$$y'\sec^2y=1$$$$y'=\dfrac{1}{\sec^2y}$$$$y'=\dfrac{1}{1+\tan^2y}$$$$\arctan'x=\dfrac{1}{1+x^2}$$
回到这题,设 $G=\arcsin F$,则$$\begin{aligned}G'&=\arcsin'F\\&=\dfrac{F'}{\sqrt{1-F^2}}\end{aligned}$$
积回来
$$G=\int \dfrac{F'}{\sqrt{1-F^2}}dx$$
同理,设 $G=\arctan F$,则$$\begin{aligned}G'&=\arctan'F\\&=\dfrac{F'}{1+F^2}\end{aligned}$$
积回来
$$G=\int\dfrac{F'}{1+F^2}dx$$ 套一下多项式求导,积分,开根,乘法,求逆即可。
#include <bits/stdc++.h>
using namespace std;
namespace IO {
//read and write
} using namespace IO;
const int N = 2.7e5 + 10;
namespace Polynomial {
const int mod = 998244353, G = 3, Gi = 332748118, inv2 = 499122177;
int lim, rev[N], a[N], b[N], c[N];
int qpow(int n, int k) {
int res = 1;
for(; k; n = 1ll * n * n % mod, k >>= 1)
if(k & 1) res = 1ll * res * n % mod;
return res;
}
void NTT(int *f, int T) {
for(int i = 0; i < lim; i++)
if(i < rev[i])
swap(f[i], f[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
int wn = qpow(T == 1 ? G : Gi, (mod - 1) / (mid << 1));
int len = mid << 1;
for(int i = 0; i < lim; i += (mid << 1)) {
int w = 1;
for(int j = 0; j < mid; j++, w = 1ll * w * wn % mod) {
int x = f[i + j], y = 1ll * w * f[i + j + mid] % mod;
f[i + j] = (x + y) % mod;
f[i + j + mid] = (x - y + mod) % mod;
}
}
}
if(T == -1) {
int inv = qpow(lim, mod - 2);
for(int i = 0; i < lim; i++)
f[i] = 1ll * f[i] * inv % mod;
}
}
void init(int n) {
for(lim = 1; lim < n; lim <<= 1);
for(int i = 0; i < lim; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) * (lim >> 1));
}
void mul(int *f, int *g, int *h, int n, int m) {
static int a[N], b[N];
init(n + m - 1);
memset(a, 0, lim << 2);
memcpy(a, f, n << 2);
memset(b, 0, lim << 2);
memcpy(b, g, m << 2);
NTT(a, 1), NTT(b, 1);
for(int i = 0; i < lim; i++)
h[i] = 1ll * a[i] * b[i] % mod;
NTT(h, -1);
}
void inv(int *f, int *g, int n) {
if(n == 1) { g[0] = qpow(f[0], mod - 2); return; }
inv(f, g, n + 1 >> 1);
init(n << 1);
copy(f, f + n, a);
fill(a + n, a + lim, 0);
NTT(a, 1), NTT(g, 1);
for(int i = 0; i < lim; i++)
g[i] = (2 - 1ll * a[i] * g[i] % mod + mod) % mod * g[i] % mod;
NTT(g, -1);
fill(g + n, g + lim, 0);
}
void sqrt(int *f, int *g, int n) {
if(n == 1) { g[0] = 1; return; }
sqrt(f, g, n + 1 >> 1);
memset(b, 0, n << 2);
inv(g, b, n);
mul(f, b, b, n, n);
for(int i = 0; i < n; i++)
g[i] = 1ll * (g[i] + b[i]) * inv2 % mod;
}
void dev(int *f, int *g, int n) {
for(int i = 1; i < n; i++)
g[i - 1] = 1ll * i * f[i] % mod;
g[n - 1] = 0;
}
void invdev(int *f, int *g, int n) {
for(int i = n - 1; i; i--)
g[i] = 1ll * f[i - 1] * qpow(i, mod - 2) % mod;
g[0] = 0;
}
void arcsin(int *f, int *g, int n) {
static int a[N], b[N], c[N];
dev(f, a, n);
mul(f, f, b, n, n);
for(int i = 0; i < n; i++)
b[i] = (mod - b[i]) % mod;
b[0] = (b[0] + 1) % mod;
sqrt(b, c, n);
memset(b, 0, lim << 2);
inv(c, b, n);
memset(c, 0, lim << 2);
mul(a, b, c, n, n);
invdev(c, g, n);
}
void arctan(int *f, int *g, int n) {
static int a[N], b[N], c[N];
dev(f, a, n);
mul(f, f, b, n, n);
b[0] = (b[0] + 1) % mod;
inv(b, c, n);
memset(b, 0, lim << 2);
mul(a, c, b, n, n);
invdev(b, g, n);
}
} using namespace Polynomial;
int n, type, f[N], g[N];
int main() {
n = read(), type = read();
for(int i = 0; i < n; i++)
f[i] = read();
if(!type) arcsin(f, g, n);
else arctan(f, g, n);
for(int i = 0; i < n; i++)
write(g[i]), putc(' ');
flush();
return 0;
}

浙公网安备 33010602011771号