【普通莫队/回滚莫队】洛谷 P3709 大爷的字符串题
-------
1.普通莫队:维护两个数组v[i]与cnt[i],v[i]表示i出现次数,cnt[i]表示出现i次的数有多少个;
对于新加入的数很好更新,ans = max(ans,v[x]),对于删除的数x,若这个的数被删之前v[x] = 1了,删完后就没了,并且出现ans次的数的个数cnt[ans] = 1,那么x就是此时的众数,删了它,那么ans--;
2.回滚莫队:发现新增一个数字可以很好的维护ans,但是删除一个数字不好维护,所以使用回滚莫队;
方式一
1.普通莫队:维护两个数组v[i]与cnt[i],v[i]表示i出现次数,cnt[i]表示出现i次的数有多少个;
对于新加入的数很好更新,ans = max(ans,v[x]),对于删除的数x,若这个的数被删之前v[x] = 1了,删完后就没了,并且出现ans次的数的个数cnt[ans] = 1,那么x就是此时的众数,删了它,那么ans--;
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define Pair pair<LL,LL>
#define ls rt<<1
#define rs rt<<1|1
#define Pi acos(-1.0)
#define eps 1e-6
#define DBINF 1e100
#define mod 1000000007
#define MAXN 1e18
#define MS 1000009
LL n,m;
int a[MS];
int b[MS],tb;
struct node{
int l,r,id;
}ask[MS];
int unit;
int v[MS];
int cnt[MS];
int ac[MS];
bool cmp(node t1,node t2){
if(t1.l/unit != t2.l/unit) return t1.l < t2.l;
return t1.r < t2.r;
}
int main() {
ios::sync_with_stdio(false);
cin >> n >> m;
for(int i=1;i<=n;i++){
cin >> a[i];
b[i] = a[i];
}
sort(b+1,b+n+1);
tb = 1;
for(int i=2;i<=n;i++){
if(b[i] != b[i-1]) b[++tb] = b[i];
}
for(int i=1;i<=n;i++){
a[i] = lower_bound(b+1,b+tb+1,a[i])-b;
}
for(int i=1;i<=m;i++){
int l,r;
cin >> l >> r;
ask[i] = {l,r,i};
}
unit = sqrt(n);
sort(ask+1,ask+m+1,cmp);
int ans = 0;
int L = 1 ,R = 0;
for(int i=1;i<=m;i++){
int l = ask[i].l;
int r = ask[i].r;
int id = ask[i].id;
while(L < l){
if(ans == v[a[L]] && cnt[v[a[L]]] == 1) ans--;
cnt[v[a[L]]]--;
v[a[L]]--;
cnt[v[a[L]]]++;
L++;
}
while(L > l){
L--;
cnt[v[a[L]]]--;
v[a[L]]++;
cnt[v[a[L]]]++;
ans = max(ans,v[a[L]]);
}
while(R < r){
R++;
cnt[v[a[R]]]--;
v[a[ R]]++;
cnt[v[a[R]]]++;
ans = max(ans,v[a[R]]);
}
while(R > r){
if(ans == v[a[R]] && cnt[v[a[R]]] == 1) ans--;
cnt[v[a[R]]]--;
v[a[R]]--;
cnt[v[a[R]]]++;
R--;
}
ac[id] = ans;
}
for(int i=1;i<=m;i++){
cout << -ac[i] << "\n";
}
return 0;
}
方式二
2.回滚莫队:发现新增一个数字可以很好的维护ans,但是删除一个数字不好维护,所以使用回滚莫队;
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define ll long long
#define ULL unsigned long long
#define Pair pair<LL,LL>
#define f1 first
#define f2 second
#define ls rt<<1
#define rs rt<<1|1
#define Pi acos(-1.0)
#define eps 1e-6
#define DBINF 1e100
#define mod 998244353
#define MAXN 1e18
#define MS 1000009
LL n,m;
LL a[MS];
LL b[MS],tb;
struct node{
int l,r,id;
}ask[MS];
LL size,bknum;
LL bkl[MS],bkr[MS];
LL belong[MS];
LL cnt[MS];
LL cnp[MS];
LL ac[MS];
void init_bk(){
size = sqrt(n);
bknum = n/size;
for(int i=1;i<=bknum;i++){
bkl[i] = (i-1)*size+1;
bkr[i] = i*size;
}
if(bkr[bknum] < n){
bknum++;
bkl[bknum] = bkr[bknum-1]+1;
bkr[bknum] = n;
}
for(int i=1;i<=bknum;i++){
for(int j=bkl[i];j<=bkr[i];j++){
belong[j] = i;
}
}
}
bool cmp(node t1,node t2){
if(belong[t1.l] != belong[t2.l]) return t1.l < t2.l;
return t1.r < t2.r;
}
int main() {
ios::sync_with_stdio(false);
cin >> n >> m;
for(int i=1;i<=n;i++){
cin >> a[i];
b[i] = a[i];
}
sort(b+1,b+n+1);
tb = 1;
for(int i=2;i<=n;i++){
if(b[i] != b[i-1]) b[++tb] = b[i];
}
for(int i=1;i<=n;i++){
a[i] = lower_bound(b+1,b+tb+1,a[i]) - b;
}
for(int i=1;i<=m;i++){
int l,r;
cin >> l >> r;
ask[i] = {l,r,i};
}
init_bk();
sort(ask+1,ask+m+1,cmp);
int L = 1 ,R = 0;
int lastbk = 0;
LL ans = 0;
for(int i=1;i<=m;i++){
if(belong[ask[i].l] == belong[ask[i].r]){
LL tmp = 0;
for(int j=ask[i].l;j<=ask[i].r;j++){
cnp[a[j]]++;
tmp = max(tmp,cnp[a[j]]);
}
ac[ask[i].id] = tmp;
for(int j=ask[i].l;j<=ask[i].r;j++){
cnp[a[j]]--;
}
continue;
}
if(belong[ask[i].l] != lastbk){
for(;L<=bkr[belong[ask[i].l]];L++) cnt[a[L]]--;
for(;R> bkr[belong[ask[i].l]];R--) cnt[a[R]]--;
lastbk = belong[ask[i].l];
ans = 0;
}
while(R < ask[i].r){
cnt[a[++R]]++;
ans = max(ans,cnt[a[R]]);
}
LL tmp = ans;
while(L > ask[i].l){
cnt[a[--L]]++;
tmp = max(tmp,cnt[a[L]]);
}
ac[ask[i].id] = tmp;
for(;L<=bkr[belong[ask[i].l]];L++) cnt[a[L]]--;
}
for(int i=1;i<=m;i++){
cout << -ac[i] << "\n";
}
return 0;
}