[Android] 输入系统(二)

在上一篇文章的最后,我们发现InputDispatcher是调用了InputChannel->sendMessage把键值发送出去,那么相应的,也有接收键值的地方。接收函数是InputChannel->receiveMessage。

在InputConsumer::consume内找到了receiveMessage,从类名能看出来发送端与接收端相当于生产者与消费者的关系。

status_t InputConsumer::consume(InputEventFactoryInterface* factory,
        bool consumeBatches, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) {
            // Receive a fresh message.
            status_t result = mChannel->receiveMessage(&mMsg);
}

 

receiveMessage内调用的是socket的接收函数recv

status_t InputChannel::receiveMessage(InputMessage* msg) {
    do {
        nRead = ::recv(mFd, msg, sizeof(InputMessage), MSG_DONTWAIT);
    } while (nRead == -1 && errno == EINTR);
}

 

 

事件接收端NativeInputEventReceiver

那么究竟是谁来消费这些事件呢,我们在NativeInputEventReceiver里面找到了答案。

在NativeInputEventReceiver内有个事件处理函数handleEvent,该函数是looperCallback的虚函数,NativeInputEventReceiver作为looperCallback的子类,自然有义务实现handleEvent这个函数。handleEvent就可以监听I/O事件。一旦有I/O事件,如上述的socket send事件,handleEvent就会被启动,进行后续的处理。

int NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) {
        status_t status = consumeEvents(env, false /*consumeBatches*/, -1, NULL);
}

 

既然有LooperCallback(NativeInputEventReceiver),必然会有Looper。虽然Looper不是本篇文章的研究对象,但是我们有必要理清下面的问题:

  • 究竟与NativeInputEventReceiver对应的这个Looper是什么?
  • 这个Looper是怎样与LooperCallback关联起来的呢?

   

实际上,一切起始于ViewRootImpl的setView方法:

public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {
...
    //在这里传入了当前线程的Looper
    new WindowInputEventReceiver(mInputChannel, Looper.myLooper());
...
}

 

InputEventReceiver作为WindowInputEventReceiver的子类,会一起被创建出来。在InputEventReceiver的构造方法中,会调用native方法nativeInit

public InputEventReceiver(InputChannel inputChannel, Looper looper) {
        mInputChannel = inputChannel;
        mMessageQueue = looper.getQueue();
        mReceiverPtr = nativeInit(new WeakReference<InputEventReceiver>(this),inputChannel, mMessageQueue);
}

 

在NativeInputEventReceiver的nativeInit方法中,创建了NativeInputEventReceiver对象,并调用它的initialize方法

static jint nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak,
        jobject inputChannelObj, jobject messageQueueObj) {
    ...
    sp<NativeInputEventReceiver> receiver = new NativeInputEventReceiver(env,
            receiverWeak, inputChannel, messageQueue);
    status_t status = receiver->initialize();
    ...
}

 

initialize方法只做了一件事,就是把NativeInputEventReceiver与Looper关联起来

status_t NativeInputEventReceiver::initialize() {
    setFdEvents(ALOOPER_EVENT_INPUT);
    return OK;
}

void NativeInputEventReceiver::setFdEvents(int events) {
    if (mFdEvents != events) {
        mFdEvents = events;
        int fd = mInputConsumer.getChannel()->getFd();
        if (events) {
            mMessageQueue->getLooper()->addFd(fd, 0, events, this, NULL);
        } else {
            mMessageQueue->getLooper()->removeFd(fd);
        }
    }
}

Looper的方法addFd实现了关联Looper与LooperCallback(NativeInputEventReceiver)的功能,我们先来分析一下传给addFd的参数

  • fd,fd即inputChannel的socket fd,Looper会侦测该fd的状态
  • events,即传入的ALOOPER_EVENT_INPUT,只有fd的状态是INPUT的时候才会触发调用LooperCallback中的handleEvent方法
  • this,即NativeInputEventReceiver,当fd状态为Input时,NativeInputEventReceiver中的handleEvent方法会被调用

 

 

在consumeEvents内,我们能看到调用了InputConsume::consume来接收InputDispatcher发送过来的事件

status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env,
        bool consumeBatches, nsecs_t frameTime, bool* outConsumedBatch) {
    for (;;) {
        status_t status = mInputConsumer.consume(&mInputEventFactory,
                consumeBatches, frameTime, &seq, &inputEvent);
        }
}

 

 

输入事件在consumeEvents内将会被处理完成,其中包含了四个主要步骤:

  1. 获取输入事件
  2. 把输入事件转换成java也能处理的格式
  3. 输入事件分发到相应窗口去处理
  4. 处理结果反馈

 

 

1. 获取输入事件已在上面阐述过

 

2. 输入事件转换

以Key为例,输入事件只是把事件内部的成员拆分,然后通过JNI调用java的构造函数来生成相应的java event对象,后面的事件处理都在java层

            jobject inputEventObj;
            switch (inputEvent->getType()) {
            case AINPUT_EVENT_TYPE_KEY:
                inputEventObj = android_view_KeyEvent_fromNative(env,
                        static_cast<KeyEvent*>(inputEvent));
                break;






// ----------------------------------------------------------------------------

jobject android_view_KeyEvent_fromNative(JNIEnv* env, const KeyEvent* event) {
    jobject eventObj = env->CallStaticObjectMethod(gKeyEventClassInfo.clazz,
            gKeyEventClassInfo.obtain,
            nanoseconds_to_milliseconds(event->getDownTime()),
            nanoseconds_to_milliseconds(event->getEventTime()),
            event->getAction(),
            event->getKeyCode(),
            event->getRepeatCount(),
            event->getMetaState(),
            event->getDeviceId(),
            event->getScanCode(),
            event->getFlags(),
            event->getSource(),
            NULL);
    if (env->ExceptionCheck()) {
        ALOGE("An exception occurred while obtaining a key event.");
        LOGE_EX(env);
        env->ExceptionClear();
        return NULL;
    }
    return eventObj;
}


    public static KeyEvent obtain(long downTime, long eventTime, int action,
                    int code, int repeat, int metaState,
                    int deviceId, int scancode, int flags, int source, String characters) {
        KeyEvent ev = obtain();
        ev.mDownTime = downTime;
        ev.mEventTime = eventTime;
        ev.mAction = action;
        ev.mKeyCode = code;
        ev.mRepeatCount = repeat;
        ev.mMetaState = metaState;
        ev.mDeviceId = deviceId;
        ev.mScanCode = scancode;
        ev.mFlags = flags;
        ev.mSource = source;
        ev.mCharacters = characters;
        return ev;
    }

 

 

 

3.输入事件分发

这里是在java层的事件分发,最终目的是为了调用到窗口的onTouch这类回调函数。

                env->CallVoidMethod(receiverObj.get(),
                       gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj);

 

 

还记得上面InputEventReceiver初始化时的流程吗?是通过setView--->new WindowInputEventReceiver--->new InputEventReceiver--->new NativeInputEventReceiver这样一步一步创建的。

通过上述的JNI调用,会调用到WindowInputEventReceiver的dispatchInputEvent方法,不过由于WindowInputEventReceiver并没有自己实现这个方法,因此会调用父类InputEventReceiver::dispatchInputEvent,内部会真正调用到WindowInputEventReceiver::onInputEvent

    public void dispatchInputEvent(InputEvent event) {
        onInputEvent(event);
    }

 

在onInputEvent内,转到了ViewRootImpl这边进行处理

public void onInputEvent(InputEvent event) {
    enqueueInputEvent(event, this, 0, true);
}
  
void enqueueInputEvent(InputEvent event,
    InputEventReceiver receiver, int flags, boolean processImmediately) {
    doProcessInputEvents();
}

 

由于事件队列内会包含多个事件,因此在doProcessInputEvent时,需要分别对所有的事件都进行分发

    void doProcessInputEvents() {
        // Deliver all pending input events in the queue.
        while (mPendingInputEventHead != null) {
            QueuedInputEvent q = mPendingInputEventHead;
            mPendingInputEventHead = q.mNext;
            if (mPendingInputEventHead == null) {
                mPendingInputEventTail = null;
            }
            q.mNext = null;

            mPendingInputEventCount -= 1;

            deliverInputEvent(q);
        }
    }

 

deliverInputEvent会调用到InputState的deliver方法

        public final void deliver(QueuedInputEvent q) {
            if ((q.mFlags & QueuedInputEvent.FLAG_FINISHED) != 0) {
                forward(q);
            } else if (shouldDropInputEvent(q)) {
                finish(q, false);
            } else {
                apply(q, onProcess(q));
            }
        }

由于一开始我们的事件还没有完成,因此不会带上FLAG_FINISHED,而且我们的事件时一般事件,并不会被丢弃,因此会走apply分支。

 

 

首先会调用onProcess处理事件

        protected int onProcess(QueuedInputEvent q) {
            if (q.mEvent instanceof KeyEvent) {
                return processKeyEvent(q);
            } else {
                // If delivering a new non-key event, make sure the window is
                // now allowed to start updating.
                handleDispatchDoneAnimating();
                final int source = q.mEvent.getSource();
                if ((source & InputDevice.SOURCE_CLASS_POINTER) != 0) {
                    return processPointerEvent(q);
                } else if ((source & InputDevice.SOURCE_CLASS_TRACKBALL) != 0) {
                    return processTrackballEvent(q);
                } else {
                    return processGenericMotionEvent(q);
                }
            }
        }

 

 

以Key为例,我们会调用到processKeyEvent

        private int processKeyEvent(QueuedInputEvent q) {

            // Deliver the key to the view hierarchy.
            if (mView.dispatchKeyEvent(event)) {
                return FINISH_HANDLED;
            }
        }

 

然后调用了View类的dispatchKeyEvent方法,最终会调用到onKey这个回调函数

    public boolean dispatchKeyEvent(KeyEvent event) {

        // Give any attached key listener a first crack at the event.
        //noinspection SimplifiableIfStatement
        ListenerInfo li = mListenerInfo;
        if (li != null && li.mOnKeyListener != null && (mViewFlags & ENABLED_MASK) == ENABLED
                && li.mOnKeyListener.onKey(this, event.getKeyCode(), event)) {
            return true;
        }
    }

 

 

4. 处理结果反馈

然后还剩下apply这个方法需要分析。如果onProcess正常处理完成后,会返回FINISH_HANDLED,否则返回FINISHED_NOT_NHANDLED。

        protected void apply(QueuedInputEvent q, int result) {
            if (result == FORWARD) {
                forward(q);
            } else if (result == FINISH_HANDLED) {
                finish(q, true);
            } else if (result == FINISH_NOT_HANDLED) {
                finish(q, false);
            } else {
                throw new IllegalArgumentException("Invalid result: " + result);
            }
        }


        protected void finish(QueuedInputEvent q, boolean handled) {
            q.mFlags |= QueuedInputEvent.FLAG_FINISHED;
            if (handled) {
                q.mFlags |= QueuedInputEvent.FLAG_FINISHED_HANDLED;
            }
            forward(q);
        }


        protected void forward(QueuedInputEvent q) {
            onDeliverToNext(q);
        }


        protected void onDeliverToNext(QueuedInputEvent q) {
            if (mNext != null) {
                mNext.deliver(q);
            } else {
                finishInputEvent(q);
            }
        }


    private void finishInputEvent(QueuedInputEvent q) {
        if (q.mReceiver != null) {
            boolean handled = (q.mFlags & QueuedInputEvent.FLAG_FINISHED_HANDLED) != 0;
            q.mReceiver.finishInputEvent(q.mEvent, handled);
        } else {
            q.mEvent.recycleIfNeededAfterDispatch();
        }

        recycleQueuedInputEvent(q);
    }

     

 

 

mReceiver.finishInputEvent就是NativeInputEvent的finishInputEvent

status_t NativeInputEventReceiver::finishInputEvent(uint32_t seq, bool handled) {

    status_t status = mInputConsumer.sendFinishedSignal(seq, handled);
}


status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) {
        while (!status && chainIndex-- > 0) {
            status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled);
        }
}


status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) {
    InputMessage msg;
    msg.header.type = InputMessage::TYPE_FINISHED;
    msg.body.finished.seq = seq;
    msg.body.finished.handled = handled;
    return mChannel->sendMessage(&msg);
}

最后也是调用sendMessage把消息反馈给InputDispatcher。

到这里,上层的处理已经完成,接下来就是InputDispatcher的反馈处理。

 

 

InputDispatcher反馈处理

反馈处理在handleReceiveCallback中进行,其中包含两个部分:

  1. 接收反馈消息
  2. 处理反馈消息
int InputDispatcher::handleReceiveCallback(int fd, int events, void* data) {
            for (;;) {
                uint32_t seq;
                bool handled;
                status = connection->inputPublisher.receiveFinishedSignal(&seq, &handled);
                if (status) {
                    break;
                }
                d->finishDispatchCycleLocked(currentTime, connection, seq, handled);
                gotOne = true;
            }
}

 

 

1. 接收反馈消息

接收反馈消息是调用的inputPublisher的receiveFinishedSignal方法,内部还是调用了mChannel->receiveMessage

status_t InputPublisher::receiveFinishedSignal(uint32_t* outSeq, bool* outHandled) {

    status_t result = mChannel->receiveMessage(&msg);

}

 

 

2. 处理反馈消息

处理反馈消息是调用了finishDispatchCycleLocked。

void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
        const sp<Connection>& connection, uint32_t seq, bool handled) {

    // Notify other system components and prepare to start the next dispatch cycle.
    onDispatchCycleFinishedLocked(currentTime, connection, seq, handled);
}

 

void InputDispatcher::onDispatchCycleFinishedLocked(
        nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled) {
    CommandEntry* commandEntry = postCommandLocked(
            & InputDispatcher::doDispatchCycleFinishedLockedInterruptible);

}

 

 

postCommandLocked其实也是发送消息给InputDispatcherThread,那么在分发线程下一次处理消息的时候会首先处理doDispatchCycleFinishedLockedInterruptible。

doDispatchCycleFinishedLockedInterruptible是实际上反馈进行处理的地方,其中包含了下面几个处理步骤:

  1. 从waitQueue中取出所反馈的事件
  2. 事件是否处理超时,如果是则做超时处理
  3. 从waitQueue中删除所反馈的事件
  4. 立刻展开下一次的outboundQueue事件监听

 

void InputDispatcher::doDispatchCycleFinishedLockedInterruptible(
        CommandEntry* commandEntry) {

    // Handle post-event policy actions.
    DispatchEntry* dispatchEntry = connection->findWaitQueueEntry(seq);


        if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) {
            String8 msg;
            msg.appendFormat("Window '%s' spent %0.1fms processing the last input event: ",
                    connection->getWindowName(), eventDuration * 0.000001f);
            dispatchEntry->eventEntry->appendDescription(msg);
            ALOGI("%s", msg.string());
        }

       
        if (dispatchEntry == connection->findWaitQueueEntry(seq)) {
            connection->waitQueue.dequeue(dispatchEntry);
        }


        // Start the next dispatch cycle for this connection.
        startDispatchCycleLocked(now(), connection);
    }
}

 

posted @ 2015-08-22 15:27  TaigaComplex  阅读(5505)  评论(2编辑  收藏  举报