HDOJ 6768 The Oculus
http://acm.hdu.edu.cn/showproblem.php?pid=6768
题意:
一个正整数 表示为 斐波那契数列数列。
存在当前第i个斐波那契数 bi 为1,否则为0。
给三个斐波那契数列表示A B C,问A * B与C修改哪一位之后 的b值相等。
思路:
哈希 求模 再得差值
找到差值在哪一位
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#include <vector>
#include <iterator>
#include <utility>
#include <sstream>
#include <limits>
#include <numeric>
#include <functional>
using namespace std;
#define gc getchar()
#define mem(a) memset(a,0,sizeof(a))
//#define sort(a,n,int) sort(a,a+n,less<int>())
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> pii;
typedef char ch;
typedef double db;
const double PI=acos(-1.0);
const double eps=1e-6;
const int inf=0x3f3f3f3f;
const int maxn=1e5+10;
const int maxm=100+10;
const int N=2e5+10;
const int mod=1e9+7;
ll a[maxn] = {0};
ll b[maxn] = {0};
int n[maxn];
int main()
{
int T = 0;
a[1] = 1;
b[1] = 1;
a[2] = 2;
b[2] = 2;
for(int i = 3;i<maxn;i++)
{
int value = 0;
cin >> T;
a[i] = (a[i-1] + a[i-2]) % mod;
b[i] = (b[i-1] + b[i-2]) % mod;
int p = 0;
while(T--)
{
ll aa = 0 , aa1 = 0;
ll bb = 0 , bb1 = 0;
int k = 0;
cin >> k;
for(int j = 1;j<=k;j++)
{
cin >> value;
if(value != 0)
{
aa += a[j];
aa %= mod;
aa1 += b[j];
aa1 %= mod;
}
}
cin >> k;
value = 0;
for(int j = 1;j<=k;j++)
{
cin >> value;
if(value != 0)
{
bb += a[j];
bb %= mod;
bb1 += b[j];
bb1 %= mod;
}
}
ll res_1 = aa * bb % mod;
ll res_2 = aa1 * bb1 % mod;
cin >> k;
ll add1 = 0;
ll add2 = 0;
for(int i = 1;i <= k;i++)
{
cin >> n[i];
if(n[i] != 0)
{
add1 = (add1 + a[i]) % mod;
add2 = (add2 + b[i]) % mod;
}
}
for(int i = 1;i<=k;i++)
{
if(n[i] == 0)
{
ll val1 = (add1 + a[i]) % mod;
ll val2 = (add2 + b[i]) % mod;
if(val1 == add1 && val2 == add2)
{
p = i;
break;
}
}
}
cout << p;
}
return 0;
}

浙公网安备 33010602011771号