2025.1.26(周日)

K近邻(KNN)是机器学习中的一种简单算法。学习时常遇到的问题是如何选择最合适的K值,以及如何处理高维数据。

如何实现K近邻算法并调优K值?

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 加载数据
data = pd.read_csv('iris.csv')
X = data.drop('species', axis=1)
y = data['species']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用KNN模型
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)

# 预测并评估
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

print(f'Accuracy: {accuracy}')

 

posted @ 2025-02-13 19:34  记得关月亮  阅读(13)  评论(0)    收藏  举报