2025.1.26(周日)
K近邻(KNN)是机器学习中的一种简单算法。学习时常遇到的问题是如何选择最合适的K值,以及如何处理高维数据。
如何实现K近邻算法并调优K值?
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # 加载数据 data = pd.read_csv('iris.csv') X = data.drop('species', axis=1) y = data['species'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 使用KNN模型 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # 预测并评估 y_pred = knn.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f'Accuracy: {accuracy}')