pyhton 操作hive数据仓库
使用库Pyhive
安装:pip install Pyhive -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
from pyhive import hive # or import hive
conn = hive.Connection(host='****', port=****, username='****', database='****')
cursor.execute(''SELECT * FROM my_awesome_data LIMIT 10'')
for i in range(****):
sql = "INSERT INTO **** VALUES ({},'username{}')".format(value, str(username))
cursor.execute(sql)
# 下面是官网代码:
from pyhive import presto # or import hive
cursor = presto.connect('localhost').cursor()
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10')
print(cursor.fetchone())
print(cursor.fetchall())
impyla
安装:
pip install Pyhive -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
from impala.dbapi import connect
conn = connect(host ='****',port = ****)
cursor = conn.cursor()
cursor.execute('SELECT * FROM mytable LIMIT 100')
print cursor.description # 打印结果集的schema
results = cursor.fetchall()
impyla交互hive 与pandas
from pyhive import hive
import pandas as pd
def LinkHive(sql_select):
connection = hive.Connection(host='localhost')
cur = connection.cursor()
cur.execute(sql_select)
columns = [col[0] for col in cursor.description]
result = [dict(zip(columns, row)) for row in cursor.fetchall()]
Main = pd.DataFrame(result)
Main.columns = columns
return Main
sql = "select * from 数据库.表名"
df = LinkHive(sql)
或者
rom impala.dbapi import connect
from impala.util import as_pandas
conn = connect(host='10.161.20.11', port=21050)
cur = conn.cursor()
cur.execute('SHOW TABLES')
cur.execute('SELECT * FROM businfo')
data = as_pandas(cur)
print (data)
print (type(data))
Usage
Impyla implements the Python DB API v2.0 (PEP 249) database interface (refer to it for API details):
from impala.dbapi import connect
conn = connect(host='my.host.com', port=21050)
cursor = conn.cursor()
cursor.execute('SELECT * FROM mytable LIMIT 100')
print cursor.description # prints the result set's schema
results = cursor.fetchall()
The Cursor object also exposes the iterator interface, which is buffered (controlled by cursor.arraysize):
cursor.execute('SELECT * FROM mytable LIMIT 100')
for row in cursor:
process(row)
Furthermore the Cursor object returns you information about the columns returned in the query. This is useful to export your data as a csv file.
import csv
cursor.execute('SELECT * FROM mytable LIMIT 100')
columns = [datum[0] for datum in cursor.description]
targetfile = '/tmp/foo.csv'
with open(targetfile, 'w', newline='') as outcsv:
writer = csv.writer(outcsv, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL, lineterminator='\n')
writer.writerow(columns)
for row in cursor:
writer.writerow(row)
You can also get back a pandas DataFrame object
from impala.util import as_pandas
df = as_pandas(cur)
# carry df through scikit-learn, for example


浙公网安备 33010602011771号