二项式反演
公式
公式 1
\[f(n) = \sum_{i = 0}^n (-1)^{n - i} \binom{n}{i} g(i) \Leftrightarrow g(n) = \sum_{i = 0}^n \binom{n}{i} f(i)
\]
证明:
\[\because g(i) = \sum_{j = 0}^i (-1)^j \binom{i}{j} f(j) \\
\therefore f(n) = \sum_{i = 0}^n (-1)^{n - i} \binom{n}{i} \sum_{j = 0}^i \binom{i}{j} f(j)
\]
将 \(\binom{n}{i}\) 乘进去:
\[f(n) = \sum_{i = 0}^n (-1)^{n - i} \sum_{j = 0}^i \binom{n}{i} \binom{i}{j} f(j)
\]
容易发现 \(\binom{n}{i} \binom{i}{j} = \binom{n}{j} \binom{n - j}{i - j}\) :
\[f(n) = \sum_{i = 0}^n (-1)^{n - i} \sum_{j = 0}^i \binom{n}{j} \binom{n - j}{i - j} f(j) \\
= \sum_{j = 0}^n \sum_{i = j}^n (-1)^{n - i} \binom{n}{j} \binom{n - j}{i - j} f(j) \\
= \sum_{j = 0}^n \binom{n}{j} f(j) \sum_{i = j}^n (-1)^{n - i} \binom{n - j}{i - j}
\]
令 \(k = i - j\) :
\[f(n) = \sum_{j = 0}^n \binom{n}{j} f(j) \sum_{k = 0}^{n - j} \binom{n - j}{k} (-1)^{n - j - k} 1^k
\]
又由二项式定理, \((1 - 1)^x = \sum_{i = 0}^x \binom{x}{i} (-1)^i 1^{x - i}\) :
\[f(n) = \sum_{j = 0}^n \binom{n}{j} f(j) (1 - 1)^{n - j} = \binom{n}{n} f(n) = f(n)
\]
\(\mathcal{Q.\ E.\ D.}\)
模型
"钦定"类问题
至少 \(\Leftrightarrow\) 恰好
\[f(x) = \sum_{i = x}^n \binom{i}{x} g(i) \Leftrightarrow g(x) = \sum_{i = x}^n (-1)^{i - x} \binom{i}{x} f(i)
\]
其中 \(f(x)\) 为至少 \(x\) 个限制的方案数, \(g(x)\) 为恰好 \(x\) 个限制的方案数.
至多 \(\Leftrightarrow\) 恰好
\[f(x) = \sum_{i = 0}^x \binom{n - i}{n - x} g(i) \Leftrightarrow g(x) = \sum_{i = 0}^x (-1)^{x - i} \binom{n - i}{n - x} f(i)
\]
在"钦定"意义下, "至多满足 \(x\) 个限制" \(\Leftrightarrow\) "至少不满足 \(n - x\) 个限制"

浙公网安备 33010602011771号