• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
FightingForWorldFinal
博客园    首页    新随笔    联系   管理    订阅  订阅

分解质因数与约数和

1.有多少个约数:  

先分解质因数 因数的次数分别是4,2,1 所以约数的个数为(4+1) *(2+1) *(1+1)=5*3*2=30 个   eg: 先分解质因数 720=2^4*3^2*5 因数的次数分别是4,2,1 所以约数的个数为(4+1)*(2+1)*(1+1)=5*3*2=30 个

 2.所有约数之和:

 2004 的约数之和为:1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 ,2004 = 4704

如何求一个数所有约数之和呢?

 首先,应用算术基本定理,化简为素数方幂的乘积。

X = a1^k1 * a2^k2........an^kn X 的所有素数之和可用公式

(1+a1 + a1^2...a1^k1) * (1+a2 + a2^2...a2^k2) * .....(1+an + an^2...an^kn)表示

如: 2004 = 2^2 * 3 *167  2004

所有因子之和为(1 + 2 + 2^2) * (1 + 3) * (1 + 167) = 4704;

程序实现的时候,可利用等比数列快速求1 + a1 + a1^2 + .....a1^n;

3.分解质因数 我用的算法是这个:

程序分析:对n 进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:

(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。

(2)如果n > k,但n 能被k 整除,则应打印出k 的值,并用n 除以k 的商,作为新的正整数你 n, 重复执行第一步。

(3)如果n 不能被k 整除,则用k+1 作为k 的值,重复执行第一步。

 

posted @ 2013-11-23 18:30  Sky-J  阅读(662)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3