Bzoj1597 [Usaco2008 Mar]土地购买

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 4005  Solved: 1460

Description

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.

Input

* 第1行: 一个数: N

* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽

Output

* 第一行: 最小的可行费用.

Sample Input

4
100 1
15 15
20 5
1 100

输入解释:

共有4块土地.

Sample Output

500

HINT

FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和 15x15 plot. 每组的价格分别为100,100,300, 总共500.

Source

 

斜率优化DP

设总花费为f[]。

从j+1到i一起买,f[i]=min(f[i],f[j]+maxw*maxw)

如果实现处理长宽h和w使得它们具有单调性,就不需要算maxw和maxh。

显然如果一块土地长宽都小于相邻一块土地,可以不需要考虑它。

先将土地按长x从小到大排序,然后维护宽y单调递减的序列。在最后得到的序列中决策

f[i]=min(f[i],f[j]+x[i]*y[j+1])

假设有两个断点k和j (k<j),若j处决策比k优,可以化简出(f[j]-f[k])/(y[k+1]-y[j+1])<x[i]

其中(f[j]-f[k])/(y[k+1]-y[j+1])可以看作直线的斜率,它越小,j越比k优

为了让斜率尽量小,用单调队列维护一个斜率单调递增的序列(下凸包),进行决策:

 1 /*by SilverN*/
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 #define LL long long
 8 using namespace std;
 9 const int mxn=50010;
10 int read(){
11     int x=0,f=1;char ch=getchar();
12     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
13     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
14     return x*f;
15 }
16 int n;
17 struct squ{
18     LL x,y;
19 }a[mxn];
20 bool operator < (const squ a,const squ b){
21     return (a.x<b.x || (a.x==b.x && a.y<b.y));
22 }
23 int cnt=0;
24 int q[mxn],hd,tl;
25 LL f[mxn];
26 double low(int x,int y){
27     return (double)(f[y]-f[x])/(a[x+1].y-a[y+1].y);
28 }
29 int main(){
30     n=read();
31     int i,j;
32     for(i=1;i<=n;i++){
33         a[i].x=read();a[i].y=read();
34     }
35     sort(a+1,a+n+1);//得到x坐标单增的序列 
36     for(i=1;i<=n;i++){
37         while(cnt && a[cnt].y<=a[i].y)cnt--;
38         a[++cnt]=a[i];//得到y坐标单增的序列 
39     }
40     hd=1;tl=1;
41     for(i=1;i<=cnt;i++){
42         while(hd<tl && low(q[hd],q[hd+1])<a[i].x)hd++;
43         int t=q[hd];
44         f[i]=f[t]+a[t+1].y*a[i].x;
45         while(hd<tl && low(q[tl],i)<low(q[tl-1],q[tl]))tl--;
46         q[++tl]=i;
47     }
48     printf("%lld\n",f[cnt]);
49     return 0;
50 }

 

本文为博主原创文章,转载请注明出处。
posted @ 2016-12-29 00:17  SilverNebula  阅读(173)  评论(0编辑  收藏  举报
AmazingCounters.com