• 博客园logo
  • 会员
  • 周边
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
SilentSamsara
博客园    首页    新随笔    联系   管理    订阅  订阅

学习日志-2021.10.24

学习日志-2021.10.24

硕士论文第二部分复现

复杂网络上的合作行为演化研究 ——基于 Q-learning 算法

源码地址:RL_for_Gaming_to_choose_action(Q-Learning)

在相同智能体比例,不同困境强度下的演化:

  • 合作率演化图:
DDS
  • 从左至右困境强度 \((DS)\)分别为0、0.02、0.04演化后的最终结果:

    图中方块边缘为红色代表为智能体(占比约为0.2)

    智能体使用Q-Learning决定策略,非智能体使用费米更新规则决定策略(阈值为 \([0,1]\) 上的随机数,模拟均匀分布)

rho=0.2, DS=0演化图rho=0.2,DS=0.02演化图rho=0.2,DS=0.04演化图

在不同智能体比例,相同困境强度下的演化:

  • 根据仿真结果智能体占比的提高在一定范围内会使合作率提高,根据论文内容的描述在智能体比例达到0.7时,合作率会达到最高水平。
Drho

结果分析

  • 本次仿真使用的网络规模为 \(100×100\) ,进行的轮次为1000轮,论文中的规模为 \(200×200\) ,进行的轮次为1000000次。可能由于本次仿真设置的轮次较少,并没有观察到后续合作率曲线上升的过程,分析原因可能是使用Q-Learning算法的智能体可能还处在“学习阶段”,智能体的Q表还未收敛。
nx
  • 虽然并没有完美地复现出论文内容,但也可以得出:在一定范围内,随着使用Q-Learning算法智能体占比的提升,网络的合作率也会随之提升。

补充

  • 50000轮效果
posted @ 2021-10-24 21:02  SilentSamsara  阅读(86)  评论(2)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3