[bzo1211][HNOI2004]树的计数_prufer序列
树的计数 bzoj-1211 HNOI-2004
题目大意:题目链接。
注释:略。
想法:
prufer序列有一个性质就是一个数在prufer序列中出现的次数等于这个prufer序列生成的树中它的度数-1。
故此我们就是要求$C_{n-2}^{d_1-1}\times C_{n-2-d_1+1}^{d_2-1}\times \cdots \times C_{d_n-1}^{d_n-1}$。
随便搞搞就行了。
Code:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 160
using namespace std;
typedef long long ll;
int n,sum,d[M];
int cnt[M];
ll ans=1;
ll Quick_Power(ll x,int y)
{
ll re=1;
while(y)
{
if(y&1)re*=x;
x*=x;
y>>=1;
}
return re;
}
void Decomposition(int x,int flag)
{
int i;
for(i=2;i*i<=x;i++)
while(x%i==0)
cnt[i]+=flag,x/=i;
if(x^1)
cnt[x]+=flag;
}
int main()
{
int i,j;
cin>>n;
for(i=2;i<=n-2;i++)
Decomposition(i,1);
for(i=1;i<=n;i++)
{
scanf("%d",&d[i]);
if(!d[i]&&n!=1)
{
puts("0");
return 0;
}
sum+=d[i]-1;
for(j=2;j<=d[i]-1;j++)
Decomposition(j,-1);
}
if(sum!=n-2)
{
puts("0");
return 0;
}
for(i=1;i<=n-2;i++)
if(cnt[i])
ans*=Quick_Power(i,cnt[i]);
cout<<ans<<endl;
}
小结:prufer序列好像只有裸题诶.....
| 欢迎来原网站坐坐! >原文链接<

浙公网安备 33010602011771号