BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

生成函数又有奇妙的性质。

$F(x)=C(x)*F(x)*F(x)+1$

然后大力解方程,得到一个带根号的式子。

多项式开根有解只与常数项有关。

发现两个解只有一个是成立的。

然后多项式开根、求逆。

不太会算复杂度为什么是$n\log {n}$的。

开根号里套了一个求逆,不应该是两个$\log$?

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define md 998244353
#define maxn 500005
#define g 3
 
int rev[maxn],n,m,C[maxn],N,l,x,Root_C[maxn],Inv_Root_C[maxn],Inv2;
 
int ksm(int a,int b)
{
    int ret=1;
    for (;b;b>>=1,a=(ll)a*a%md) if (b&1) ret=(ll)ret*a%md;
    return ret;
}
 
void NTT(int *x,int n,int flag)
{
    F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
    for (int m=2;m<=n;m<<=1)
    {
        int wn=ksm(g,((md-1)/m*flag+md-1)%(md-1));
        for (int i=0;i<n;i+=m)
        {
            int w=1;
            for (int j=0;j<(m>>1);++j)
            {
                int u=x[i+j],v=(ll)x[i+j+(m>>1)]*w%md;
                x[i+j]=(u+v)%md,x[i+j+(m>>1)]=(u-v+md)%md;
                w=(ll)w*wn%md;
            }
        }
    }
    if (flag==-1){int inv=ksm(n,md-2);F(i,0,n-1)x[i]=(ll)x[i]*inv%md;}
}
void Get_Inv(int *a,int *b,int n)
{
    static int tmp[maxn];
    if (n==1) {b[0]=ksm(a[0],md-2);return;}
    Get_Inv(a,b,n>>1);
    F(i,0,n-1) tmp[i]=a[i],tmp[n+i]=0;
    int L=0;while(!(n>>L&1))L++;
    F(i,0,(n<<1)-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<L);
    NTT(tmp,n<<1,1);NTT(b,n<<1,1);
    F(i,0,(n<<1)-1) tmp[i]=(ll)b[i]*(2-(ll)tmp[i]*b[i]%md+md)%md;
    NTT(tmp,n<<1,-1); F(i,0,n-1) b[i]=tmp[i],b[n+i]=0;
}
 
void Get_Root(int *a,int *b,int n)
{
    static int tmp[maxn],b_Inv[maxn];
    if (n==1) {b[0]=1;return;}
    Get_Root(a,b,n>>1);
    F(i,0,n-1) b_Inv[i]=0;
    Get_Inv(b,b_Inv,n);
    F(i,0,n-1) tmp[i]=a[i],tmp[i+n]=0;
    NTT(tmp,n<<1,1);NTT(b,n<<1,1);NTT(b_Inv,n<<1,1);
    F(i,0,(n<<1)-1)
        tmp[i]=(ll)Inv2*(b[i]+(ll)b_Inv[i]*tmp[i]%md)%md;
    NTT(tmp,n<<1,-1);F(i,0,n-1) b[i]=tmp[i],b[n+i]=0;
}
 
 
int main()
{
    scanf("%d%d",&n,&m);Inv2=ksm(2,md-2);
    F(i,1,n)scanf("%d",&x),C[x]=(C[x]-4+md)%md;
    C[0]=1;for(N=1;N<=m;N<<=1);
    Get_Root(C,Root_C,N);
    Root_C[0]=(1+Root_C[0])%md;
    Get_Inv(Root_C,Inv_Root_C,N);
    F(i,0,100000) Inv_Root_C[i]=(ll)2*Inv_Root_C[i]%md;
    F(i,1,m) printf("%d\n",Inv_Root_C[i]);
}

  

posted @ 2017-04-27 20:36  SfailSth  阅读(...)  评论(...编辑  收藏