已知dp高位攻击-二元coppor

题目

  • ! LitCTF2025-leak
from Crypto.Util.number import *  
from enc import flag  
  
m = bytes_to_long(flag)  
p,q,e = getPrime(1024),getPrime(1024),getPrime(101)  
n = p*q  
temp = gmpy2.invert(e,p-1)  
c = pow(m,e,n)  
hint = temp>>180  
print(f"e = {e}")  
print(f"n = {n}")  
print(f"c = {c}")  
print(f"hint = {hint}")  
'''  
e = 1915595112993511209389477484497  
n = 12058282950596489853905564906853910576358068658769384729579819801721022283769030646360180235232443948894906791062870193314816321865741998147649422414431603039299616924238070704766273248012723702232534461910351418959616424998310622248291946154911467931964165973880496792299684212854214808779137819098357856373383337861864983040851365040402759759347175336660743115085194245075677724908400670513472707204162448675189436121439485901172477676082718531655089758822272217352755724670977397896215535981617949681898003148122723643223872440304852939317937912373577272644460885574430666002498233608150431820264832747326321450951  
c = 5408361909232088411927098437148101161537011991636129516591281515719880372902772811801912955227544956928232819204513431590526561344301881618680646725398384396780493500649993257687034790300731922993696656726802653808160527651979428360536351980573727547243033796256983447267916371027899350378727589926205722216229710593828255704443872984334145124355391164297338618851078271620401852146006797653957299047860900048265940437555113706268887718422744645438627302494160620008862694047022773311552492738928266138774813855752781598514642890074854185464896060598268009621985230517465300289580941739719020511078726263797913582399  
hint = 10818795142327948869191775315599184514916408553660572070587057895748317442312635789407391509205135808872509326739583930473478654752295542349813847128992385262182771143444612586369461112374487380427668276692719788567075889405245844775441364204657098142930  
'''

解题思路

  • $dp$ 的高位泄露[[已知dp高位攻击]]但是又不同于他
  • $dp*e=1+k(p-1)$
  • $(dp_h+x)*e-1-k=0 \bmod p$
  • 二元coppor就行

解答

from Crypto.Util.number import *
def small_roots(f, bounds, m=1, d=None):
    if not d:
        d = f.degree()
    R = f.base_ring()
    N = R.cardinality()
    #f /= f.coefficients().pop(0)
    f = f.change_ring(ZZ)
    G = Sequence([], f.parent())
    for i in range(m + 1):
        base = N ^ (m - i) * f ^ i
        for shifts in itertools.product(range(d), repeat=f.nvariables()):
            g = base * prod(map(power, f.variables(), shifts))
            G.append(g)
    B, monomials = G.coefficient_matrix()
    monomials = vector(monomials)
    factors = [monomial(*bounds) for monomial in monomials]
    for i, factor in enumerate(factors):
        B.rescale_col(i, factor)
    B = B.dense_matrix().LLL()
    B = B.change_ring(QQ)
    for i, factor in enumerate(factors):
        B.rescale_col(i, 1 / factor)
    H = Sequence([], f.parent().change_ring(QQ))
    for h in filter(None, B * monomials):
        H.append(h)
        I = H.ideal()
        if I.dimension() == -1:
            H.pop()
        elif I.dimension() == 0:
            roots = []
            for root in I.variety(ring=ZZ):
                root = tuple(R(root[var]) for var in f.variables())
                roots.append(root)
            return roots
    return []

from Crypto.Util.number import *
import hashlib
import itertools
from tqdm import *


e = 1915595112993511209389477484497
n = 12058282950596489853905564906853910576358068658769384729579819801721022283769030646360180235232443948894906791062870193314816321865741998147649422414431603039299616924238070704766273248012723702232534461910351418959616424998310622248291946154911467931964165973880496792299684212854214808779137819098357856373383337861864983040851365040402759759347175336660743115085194245075677724908400670513472707204162448675189436121439485901172477676082718531655089758822272217352755724670977397896215535981617949681898003148122723643223872440304852939317937912373577272644460885574430666002498233608150431820264832747326321450951
c = 5408361909232088411927098437148101161537011991636129516591281515719880372902772811801912955227544956928232819204513431590526561344301881618680646725398384396780493500649993257687034790300731922993696656726802653808160527651979428360536351980573727547243033796256983447267916371027899350378727589926205722216229710593828255704443872984334145124355391164297338618851078271620401852146006797653957299047860900048265940437555113706268887718422744645438627302494160620008862694047022773311552492738928266138774813855752781598514642890074854185464896060598268009621985230517465300289580941739719020511078726263797913582399
hint = 10818795142327948869191775315599184514916408553660572070587057895748317442312635789407391509205135808872509326739583930473478654752295542349813847128992385262182771143444612586369461112374487380427668276692719788567075889405245844775441364204657098142930
leak=hint<<180
R.<x,y> = PolynomialRing(Zmod(n))
f = e * (leak + x) + (y - 1)
res = small_roots(f,(2^180,2^180),m=1,d=4)

dq_l=int(res[0][0])
k=int(res[0][1])

dq=leak+dq_l
p=(e*dq-1)//k +1
q=n//p
phi=(p-1)*(q-1)
d=inverse(e,phi)
print(long_to_bytes(pow(c,d,n)))
#LitCTF{03ecda15d1a89b06454c6050c1bd489f}
from Crypto.Util.number import *
import itertools

def small_roots(f, bounds, m=1, d=None):
    if not d:
        d = f.degree()

    R = f.base_ring()
    N = R.cardinality()

    f = f.change_ring(ZZ)

    G = Sequence([], f.parent())
    for i in range(m + 1):
        base = N ^ (m - i) * f ^ i
        for shifts in itertools.product(range(d), repeat=f.nvariables()):
            g = base * prod(map(power, f.variables(), shifts))
            G.append(g)

    B, monomials = G.coefficient_matrix()
    monomials = vector(monomials)

    factors = [monomial(*bounds) for monomial in monomials]
    for i, factor in enumerate(factors):
        B.rescale_col(i, factor)

    B = B.dense_matrix().LLL()

    B = B.change_ring(QQ)
    for i, factor in enumerate(factors):
        B.rescale_col(i, 1 / factor)

    H = Sequence([], f.parent().change_ring(QQ))
    for h in filter(None, B * monomials):
        H.append(h)
        I = H.ideal()
        if I.dimension() == -1:
            H.pop()
        elif I.dimension() == 0:
            roots = []
            for root in I.variety(ring=ZZ):
                root = tuple(R(root[var]) for var in f.variables())
                roots.append(root)
            return roots

    return []

e = 1915595112993511209389477484497
n = 12058282950596489853905564906853910576358068658769384729579819801721022283769030646360180235232443948894906791062870193314816321865741998147649422414431603039299616924238070704766273248012723702232534461910351418959616424998310622248291946154911467931964165973880496792299684212854214808779137819098357856373383337861864983040851365040402759759347175336660743115085194245075677724908400670513472707204162448675189436121439485901172477676082718531655089758822272217352755724670977397896215535981617949681898003148122723643223872440304852939317937912373577272644460885574430666002498233608150431820264832747326321450951
c = 5408361909232088411927098437148101161537011991636129516591281515719880372902772811801912955227544956928232819204513431590526561344301881618680646725398384396780493500649993257687034790300731922993696656726802653808160527651979428360536351980573727547243033796256983447267916371027899350378727589926205722216229710593828255704443872984334145124355391164297338618851078271620401852146006797653957299047860900048265940437555113706268887718422744645438627302494160620008862694047022773311552492738928266138774813855752781598514642890074854185464896060598268009621985230517465300289580941739719020511078726263797913582399
hint = 10818795142327948869191775315599184514916408553660572070587057895748317442312635789407391509205135808872509326739583930473478654752295542349813847128992385262182771143444612586369461112374487380427668276692719788567075889405245844775441364204657098142930

R.<dp_low, k> = PolynomialRing(Zmod(n))

f = e * (hint * 2^180 + dp_low) + k - 1  

ans, k=small_roots(f, [2 ** 180, 2 ** 100], 1, 3)[0]

dp = hint * 2^180 + ans
p = (e * dp - 1) // k + 1

d = inverse(e, int(p - 1))
m = pow(c, d, p)
print(long_to_bytes(int(m)))
#LitCTF{03ecda15d1a89b06454c6050c1bd489f}
posted @ 2025-07-25 19:08  sevensnight  阅读(15)  评论(0)    收藏  举报