题目:
from Crypto.Util.number import *
flag = b'Spirit{*****************************}'
plaintext = bytes_to_long(flag)
length = plaintext.bit_length()
a = getPrime(length)
b = getPrime(length)
n = getPrime(length)
seed = plaintext
for i in range(10):
seed = (a*seed+b)%n
ciphertext = seed
print("a = ",a)
print("b = ",b)
print("n = ",n)
print("c = ",ciphertext)
# a = 59398519837969938359106832224056187683937568250770488082448642852427682484407513407602969
# b = 32787000674666987602016858366912565306237308217749461581158833948068732710645816477126137
# n = 43520375935212094874930431059580037292338304730539718469760580887565958566208139467751467
# c = 8594514452808046357337682911504074858048299513743867887936794439125949418153561841842276
解题思路:
- 根据题意求flag相当于求plaintext,求plaintext相当于求初始seed,我们知道lcg算法十次之后的seed=ciphertext=c,而c我们已知,我们还知道a,b,n;所以这道题要我们从lcg十次之后的seed推算出初始seed
- 用公式1: Xn=(a-1** (Xn+1 - b))%n**
- 这里a-1是a相对于模数m的逆元,他也有公式
MMI = lambda A, n,s=1,t=0,N=0: (n < 2 and t%N or MMI(n, A%n, t, s-A//n*t, N or n),-1)[n<1] #逆元计算
解答:
import gmpy2
from Crypto.Util.number import *
a = 59398519837969938359106832224056187683937568250770488082448642852427682484407513407602969
b = 32787000674666987602016858366912565306237308217749461581158833948068732710645816477126137
n = 43520375935212094874930431059580037292338304730539718469760580887565958566208139467751467
c = 8594514452808046357337682911504074858048299513743867887936794439125949418153561841842276
seed = c
inv_a = gmpy2.invert(a,n)
for i in range(10):
seed = (seed - b) * inv_a % n
m = seed
print(long_to_bytes(m))
#Spirit{Orzzz__number_the0ry_master!!}