NC15332 B.小圆前辈的素数(fft+计数)
目录
Description
有两个数组,数组 \(a\) 中的每个数都可以与 \(b\) 中的数相加,求这 \(mn\) 个数中有多少数为质数
State
\(1<=n,m<=10^5\)
\(1<=a[i], b[i]<=10^5\)
Input
1
2 3
1 2
3 4 6
Output
3
Solution
要计算这 \(mn\) 个数的值并没有很好的办法,可以通过多项式相乘指数相加的方法求出这 \(mn\) 个数,再依次判断即可
因为取模的原因,\(ntt\) 可能造成答案并不准确,所以采用 \(fft\)
$hint: $ 一个质数可能出现多次; 而且有多组测试样例
Code
const int N = 4e5 + 5;
int n, m, _, k;
struct Complex
{
double x, y;
Complex(double x = 0, double y = 0): x(x), y(y){}
Complex operator+(const Complex &o) const{return{x+o.x,y+o.y};}
Complex operator-(const Complex &o) const{return{x-o.x,y-o.y};}
Complex operator*(const Complex &o) const{return{x*o.x-y*o.y,x*o.y+y*o.x};}
}a[N], b[N];
bool isp[N];
int prm[N / 10 + 5], tot = 0;
int get_p()
{
fill_n(isp, N, 1);
isp[0] = isp[1] = 0;
for (ll i = 2; i < N; i++){
if(isp[i]){
prm[++ tot] = i;
}
for(int j = 1; j <= tot && prm[j] * i < N; j ++){
isp[prm[j] * i] = 0;
if(i % prm[j] == 0) break;
}
}
return tot;
}
int lim = 1, rev[N], bit = 0;
void init(int n)
{
while(lim <= n) lim *= 2, bit ++;
for(int i = 0; i < lim; i ++){
rev[i] = rev[i >> 1] >> 1 | ((i & 1) << (bit - 1));
}
}
void fft(Complex *a, int type)
{
for(int i = 0; i < lim; i ++){
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int mid = 1; mid < lim; mid *= 2){
Complex wn = Complex(cos(pi / mid), type * sin(pi / mid));
for(int i = 0, len = mid * 2; i < lim; i += len){
Complex w = Complex(1, 0);
for(int j = 0; j < mid; j ++){
Complex x = a[i + j], y = a[i + j + mid] * w;
a[i + j] = x + y;
a[i + j + mid] = x - y;
w = w * wn;
}
}
}
if(type == 1) return ;
for(int i = 0; i < lim; i ++){
a[i].x = a[i].x / lim + 0.5;
}
}
void clear()
{
for(int i = 0; i <= lim; i ++){
a[i].x = b[i].x = 0;
a[i].y = b[i].y = 0;
}
}
signed main()
{
//IOS;
get_p();
init(2e5);
rush(){
sdd(n, m);
rep(i, 1, n){
sd(k);
a[k].x ++;
}
rep(i, 1, m){
sd(k);
b[k].x ++;
}
fft(a, 1); fft(b, 1);
for(int i = 0; i < lim; i ++){
a[i] = a[i] * b[i];
}
fft(a, -1);
ll ans = 0;
for(int i = 2; i < lim; i ++){
if(isp[i]) ans += a[i].x;
}
pll(ans);
clear();
}
//PAUSE;
return 0;
}

浙公网安备 33010602011771号