P4157 [SCOI2006]整数划分(FFT)
目录
Description
将一个数分解成多个数之和,使得这些数的乘积最大
State
\(10<=n<=31000\)
Input
13
Output
3
108
Solution
前置结论:将数 \(x\) 分解成尽可能多的 \(3\) 可以使得答案最大
最后要求的便是:\(3^n*res,\ res∈\{1,2,4\}\),\(3^n\) 可以通过 \(fft\) 和快速幂求解,只不过只将常数项置为 \(3\),这样形成的多项式就变成了 \(a[k]*10^k+a[k-1]*10^{k-1}...a[1]*10+a[0]\) 的形式了
Code
const int N = 4e6 + 5;
ll n, m, _;
int i, j, k;
struct Complex
{
double x,y;
Complex (double x = 0, double y = 0) : x(x), y(y){}
}a[N],b[N];
Complex operator+(Complex a, Complex b){ return Complex(a.x + b.x ,a.y + b.y); }
Complex operator-(Complex a, Complex b){ return Complex(a.x - b.x ,a.y - b.y); }
Complex operator*(Complex a, Complex b){ return Complex(a.x * b.x - a.y * b.y ,a.x * b.y + a.y * b.x); }
int lim = 1, bit = 0, rev[N];
void init(int n)
{
while(lim <= n) lim <<= 1, bit ++;
for(int i = 0; i < lim; i ++){
rev[i] = rev[i >> 1] >> 1 | ((i & 1) << (bit - 1));
}
}
void fft(Complex *a, int type)
{
for(int i = 0; i < lim; i ++){
if(i >= rev[i]) swap(a[i], a[rev[i]]);
}
for(int mid = 1; mid < lim; mid *= 2){
Complex wn(cos(pi / mid), sin(pi / mid) * type);
for(int len = mid * 2, i = 0; i < lim; i += len){
Complex w(1, 0);
for(int j = 0; j < mid; j ++, w = w * wn){
Complex x = a[i + j], y = a[i + j + mid] * w;
a[i + j] = x + y;
a[i + j + mid] = x - y;
}
}
}
if(type == 1) return ;
for(int i = 0; i < lim; i ++){
a[i].x /= lim;
}
}
void ksm(int x)
{
while(x){
if(x & 1){
fft(a, 1); fft(b, 1);
for(int i = 0; i < lim; i ++) a[i] = a[i] * b[i];
fft(a, -1); fft(b, -1);
for(int i = 0; i < lim; i ++){
int ava = (a[i].x + 0.5) / 10, eva = (b[i].x + 0.5) / 10;
a[i] = Complex(int(a[i].x + 0.5) % 10, 0);
b[i] = Complex(int(b[i].x + 0.5) % 10, 0);
a[i + 1].x += ava, b[i + 1].x += eva;
}
}
fft(b, 1);
for(int i = 0; i < lim; i ++) b[i] = b[i] * b[i];
fft(b, -1);
for(int i = 0; i < lim; i ++){
int ava = (b[i].x + 0.5) / 10;
b[i] = Complex(int(b[i].x + 0.5) % 10, 0);
b[i + 1].x += ava;
}
x >>= 1;
}
}
signed main()
{
//IOS;
while(~ sd(n)){
if(n % 3 == 0) a[0] = 1;
else if(n % 3 == 1) a[0] = 4, n -= 4;
else a[0] = 2, n -= 2;
b[0] = 3;
init(n / 3);
ksm(n / 3);
while(a[lim].x == 0) lim --;
pd(lim + 1);
for(int i = lim, j = 0; ~ i && j <= 99; i --, j ++){
printf("%d", int(a[i].x + 0.5));
}
}
//PAUSE;
return 0;
}

浙公网安备 33010602011771号