\(\newcommand{\dd}{\mathrm d}\)
\(\newcommand{\pdv}[2]{\frac{\partial{#1}}{\partial#2}}\)
\(\newcommand{\odv}[2]{\frac{\dd{#1}}{\dd#2}}\)
\(\newcommand{\chap}{§}\)
\(\newcommand{\thm}{\textbf{定理:}}\)
\(\newcommand{\prop}{\textbf{命題:}}\)
\(\newcommand{\lm}{\textbf{引理:}}\)
\(\newcommand{\def}{\textbf{定義:}}\)
\(\newcommand{\rmk}{\textbf{注釋:}}\)
\(\newcommand{\eg}{\textbf{例子:}}\)
讀書筆記《測度與概率》
$\chap1\ $ 概率空間
$\chap1.1\ $集類
\(\def\)設\(\Omega\ne\varnothing\),\(\mathscr S\subseteq\mathscr P(\Omega)\)稱爲\(\Omega\)的一個半集代數,若:
- \(\Omega,\varnothing\in\mathscr S\);
- 若\(A,B\in\mathscr S\),則\(A\cap B\in\mathscr S\);
- 若\(A,A_1\in\mathscr S\)且\(A_1\subseteq A\),則存在\(A_2,\cdots,A_n\in\mathscr S\)滿足\(A_1,\cdots,A_n\)互不相交,且$$A=\bigcup_{k=1}^nA_k$$
\(\rmk\)容易驗證,第三條可以換爲:
- 若\(A\in\mathscr S\),則存在\(A_1,\cdots,A_n\in\mathscr S\)滿足$$A^c =\bigcup_{k=1}^nA_k$$
\(\def\)稱\(\mathscr{A\subseteq P}(\Omega)\)為一個集代數(或稱布爾代數),若:
- \(\Omega\in\mathscr A\);
- 若\(A,B\in\mathscr A\),則\(A\cap B\in\mathscr A\);
- 若\(A\in\mathscr A\),則\(A^c\in\mathscr A\)。
\(\lm\)設\(\mathscr S\)是\(\Omega\)的半集代數,則
\(\begin{align*}\mathscr A&\triangleq\{\bigcup\limits_{k=1}^nA_k|A_1,\cdots,A_n\in\mathscr S\text{兩兩不交}\}\\&=\{\bigcup\limits_{k=1}^nA_k|A_1,\cdots,A_n\in\mathscr S\}\end{align*}\)
是包含\(\mathscr S\)的最小集代數,記爲\(\mathscr A(\mathscr S)\)。
\(\def\)稱\(\mathscr{F\subseteq P}(\Omega)\)是\(\sigma\)-代數,若:
- \(\Omega\in\mathscr F\);
- \(A\in\mathscr F\Longrightarrow A^c\in\mathscr F\);
- 若\(A_n\in\mathscr F(\forall n\in\mathbb N_+)\),則$$\bigcup_{n=1}^\infty A_n\in\mathscr F$$
\(\lm\)設\(\mathscr F_i(i\in I)\)是一族\(\sigma\)-代數,則$$\bigcap_{i\in I}\mathscr F_i$$仍爲\(\sigma\)-代數。
\(\thm\)設\(\mathscr C\subseteq\mathscr P(\Omega)\),則存在唯一的一個\(\sigma\)-代數\(\sigma(\mathscr C)\)包含\(\mathscr C\),且被所有包含\(\mathscr C\)的\(\sigma-\)代數包含。其稱爲由\(\mathscr C\)生成的\(\sigma-\)代數。
\(\blacktriangleleft\)其實,取$$\sigma(\mathscr C)=\bigcap_{\substack{\mathscr F\text{為}\sigma\text{代數}\\ \mathscr F\supseteq \mathscr C}}\mathscr F$$即可。
\(\blacktriangleright\)
\(\eg\)
\(\begin{align*}\mathscr B^d&\triangleq\sigma\left(\{(a_1,b_1]\times\cdots\times(a_d,b_d]\}\right)\\&=\sigma(\mathscr O)\subseteq \mathbb R^d\end{align*}\)
稱爲\(\mathbb R^d\)上的波萊爾集,其中\(\mathscr O\)是全體開集。後一種定義可以推廣到一般的度量空間。
\(\def\)
- \(\Omega\)的子集類\(\Pi\)稱爲\(\pi\)系,若$$(A,B\in\Pi)\Longrightarrow (A\cap B\in\Pi)$$
- \(\Omega\)的子集類\(\Lambda\)稱爲\(\lambda\)系(亦稱Dynkin系),若:
- \(\Omega\in\Lambda\);
- (對真差封閉)若\(A\subseteq B\)且\(A,B\in\Lambda\),則\(A\backslash B\in\Lambda\);
- (單調性)
\(\lm\)若\(\mathscr C\)既是\(\lambda\)系也是\(\pi\)系,則\(\mathscr C\)是\(\sigma-\)代數。
\(\blacktriangleleft\)
其實,由\(\lambda\)系定義的第一二條可知對任意\(A\in\mathscr C\)有\(A^c=\Omega\backslash A\in\mathscr C\),因此只需驗證\(\mathscr C\)對可數並封閉。
對\(\{A_1,A_2,\cdots\}\subseteq \mathscr C\),令$$B_n=\bigcup_{k=1}^nA_k(n\in\mathbb N_+)$$則\(B_1\subseteq B_2\subseteq\cdots\),且$$\bigcup_{k=1}^\infty A_k=\bigcup_{k=1}^\infty B_k$$
故由\(\lambda\)系的單調性即可知$$\bigcup_{k=1}^\infty A_k\in\mathscr C$$
$\blacktriangleright$
\(\thm\)(單調類定理)對\(\mathscr C\subseteq \mathscr P(\Omega)\),設$$\Lambda(\mathscr C)=\bigcap_{\substack{\Lambda\supseteq \mathscr C\\ \Lambda\text{為}\lambda\text{系}}}\Lambda$$為包含\(\mathscr C\)的最小\(\lambda\)系。
現設\(\mathscr C\)是\(\pi\)系,則$$\Lambda(\mathscr C)=\sigma(\mathscr C)$$
\(\blacktriangleleft\)
其實,我們只需證明兩個方向的包含關係。由於\(\sigma-\)代數都是\(\lambda\)系,故$$\Lambda(\mathscr C)\subseteq\sigma(\mathscr C)$$
下證明$$\Lambda(\mathscr C)\supseteq\sigma(\mathscr C)$$而這只需要\(\Lambda(\mathscr C)\)為\(\pi\)系。
對\(A\in\Lambda(\mathscr C)\),令
容易證明\(\mathscr A_A\)為\(\lambda\)系。因此,由\(\Lambda(\mathscr C)\)的最小性,對任意\(A\in\mathscr C\)都有\(\mathscr A_A=\Lambda(\mathscr C)\)。這樣對任意\(A\in\Lambda(\mathscr C)\)都有\(\mathscr C\subseteq \mathscr A_A\),進而也等於\(\Lambda(\mathscr C)\)。這樣就證明了\(\Lambda(\mathscr C)\)為\(\pi\)系。
$\blacktriangleright$