\(<\newcommand{\dd}{\mathrm d}\)
\(\newcommand{\pdv}[2]{\frac{\partial{#1}}{\partial#2}}\)
\(\newcommand{\odv}[2]{\frac{\dd{#1}}{\dd#2}}\)
\(\newcommand{\thm}{\textbf{定理:}}\)
\(\newcommand{\prop}{\textbf{命題:}}\)
\(\newcommand{\lm}{\textbf{引理:}}\)
\(\newcommand{\def}{\textbf{定義:}}\)
\(\newcommand{\rmk}{\textbf{注釋:}}\)
\(\newcommand{\eg}{\textbf{例子:}}\)
讀書筆記《測度與概率》
$\S 1\ $ 概率空間與測度空間
$\S 1.1\ $集類
\(\def\)設\(\Omega\ne\varnothing\),\(\mathscr S\subseteq\mathscr P(\Omega)\)稱爲\(\Omega\)的一個半集代數,若:
- \(\Omega,\varnothing\in\mathscr S\);
- 若\(A,B\in\mathscr S\),則\(A\cap B\in\mathscr S\);
- 若\(A,A_1\in\mathscr S\)且\(A_1\subseteq A\),則存在\(A_2,\cdots,A_n\in\mathscr S\)滿足\(A_1,\cdots,A_n\)互不相交,且$$A=\bigcup_{k=1}^nA_k$$
\(\rmk\)容易驗證,第三條可以換爲:
- 若\(A\in\mathscr S\),則存在\(A_1,\cdots,A_n\in\mathscr S\)滿足$$A^c =\bigcup_{k=1}^nA_k$$
\(\rm\) \(\rmk\) 若\(\mathscr S\)只滿足後兩條,則稱其為一個半環。
\(\def\)稱\(\mathscr{A\subseteq P}(\Omega)\)為一個集代數(或稱布爾代數),若:
- \(\Omega\in\mathscr A\);
- 若\(A,B\in\mathscr A\),則\(A\cap B\in\mathscr A\);
- 若\(A\in\mathscr A\),則\(A^c\in\mathscr A\)。
\(\def\) 稱\(\mathscr R\subseteq\mathscr P(\Omega)\)為一個環,若對任意\(A,B\in\mathscr R\)有\(A\cup B,A\backslash B\in\mathscr R\)。
\(\lm\)設\(\mathscr S\)是\(\Omega\)的半集代數,則
\(\begin{align*}\mathscr A&\triangleq\{\bigcup\limits_{k=1}^nA_k|A_1,\cdots,A_n\in\mathscr S\text{兩兩不交}\}\\&=\{\bigcup\limits_{k=1}^nA_k|A_1,\cdots,A_n\in\mathscr S\}\end{align*}\)
是包含\(\mathscr S\)的最小集代數,記爲\(\mathscr A(\mathscr S)\)。
\(\def\)稱\(\mathscr{F\subseteq P}(\Omega)\)是\(\sigma\)-代數,若:
- \(\Omega\in\mathscr F\);
- \(A\in\mathscr F\Longrightarrow A^c\in\mathscr F\);
- 若\(A_n\in\mathscr F(\forall n\in\mathbb N_+)\),則$$\bigcup_{n=1}^\infty A_n\in\mathscr F$$
\(\lm\)設\(\mathscr F_i(i\in I)\)是一族\(\sigma\)-代數,則$$\bigcap_{i\in I}\mathscr F_i$$仍爲\(\sigma\)-代數。
\(\thm\)設\(\mathscr C\subseteq\mathscr P(\Omega)\),則存在唯一的一個\(\sigma\)-代數\(\sigma(\mathscr C)\)包含\(\mathscr C\),且被所有包含\(\mathscr C\)的\(\sigma-\)代數包含。其稱爲由\(\mathscr C\)生成的\(\sigma-\)代數。(事實上,對於各種運算決定的類均可如此定義,詳細可見習題3.1第16題所描述的\(S\)-類。)
\(\blacktriangleleft\)其實,取 $$\sigma(\mathscr C)=\bigcap_{\substack{\mathscr F\text{為}\sigma\text{代數}\\ \mathscr F\supseteq \mathscr C}}\mathscr F$$ 即可。\(\blacktriangleright\)
\(\eg\)
\(\begin{align*}\mathscr B^d&\triangleq\sigma\left(\{(a_1,b_1]\times\cdots\times(a_d,b_d]\}\right)\\&=\sigma(\mathscr O)\subseteq \mathbb R^d\end{align*}\)
稱爲\(\mathbb R^d\)上的波萊爾(Borel)集,其中\(\mathscr O\)是全體開集。後一種定義可以推廣到一般的度量空間。
\(\def\)
- \(\Omega\)的子集類\(\Pi\)稱爲\(\pi\)系,若$$(A,B\in\Pi)\Longrightarrow (A\cap B\in\Pi)$$
- \(\Omega\)的子集類\(\Lambda\)稱爲\(\lambda\)系(亦稱登金( Dynkin)系),若:
- \(\Omega\in\Lambda\);
- (對真差封閉)若\(A\subseteq B\)且\(A,B\in\Lambda\),則\(A\backslash B\in\Lambda\);
- (單調性)
\(\lm\)若\(\mathscr C\)既是\(\lambda\)系也是\(\pi\)系,則\(\mathscr C\)是\(\sigma-\)代數。
\(\blacktriangleleft\)
其實,由\(\lambda\)系定義的第一二條可知對任意\(A\in\mathscr C\)有\(A^c=\Omega\backslash A\in\mathscr C\),因此只需驗證\(\mathscr C\)對可數並封閉。
對\(\{A_1,A_2,\cdots\}\subseteq \mathscr C\),令$$B_n=\bigcup_{k=1}^nA_k(n\in\mathbb N_+)$$則\(B_1\subseteq B_2\subseteq\cdots\),且$$\bigcup_{k=1}^\infty A_k=\bigcup_{k=1}^\infty B_k$$
故由\(\lambda\)系的單調性即可知$$\bigcup_{k=1}^\infty A_k\in\mathscr C$$
$\blacktriangleright$
\(\thm\)(單調類定理,或稱登金引理)對\(\mathscr C\subseteq \mathscr P(\Omega)\),設$$\Lambda(\mathscr C)=\bigcap_{\substack{\Lambda\supseteq \mathscr C\\ \Lambda\text{為}\lambda\text{系}}}\Lambda$$為包含\(\mathscr C\)的最小\(\lambda\)系。
現設\(\mathscr C\)是\(\pi\)系,則$$\Lambda(\mathscr C)=\sigma(\mathscr C)$$
\(\blacktriangleleft\) 其實,我們只需證明兩個方向的包含關係。由於\(\sigma-\)代數都是\(\lambda\)系,故$$\Lambda(\mathscr C)\subseteq\sigma(\mathscr C)$$
下證明$$\Lambda(\mathscr C)\supseteq\sigma(\mathscr C)$$而這只需要\(\Lambda(\mathscr C)\)為\(\pi\)系。
對\(A\in\Lambda(\mathscr C)\),令
容易證明\(\mathscr A_A\)為\(\lambda\)系。因此,由\(\Lambda(\mathscr C)\)的最小性,對任意\(A\in\mathscr C\)都有\(\mathscr A_A=\Lambda(\mathscr C)\)。這樣對任意\(A\in\Lambda(\mathscr C)\)都有\(\mathscr C\subseteq \mathscr A_A\),進而也等於\(\Lambda(\mathscr C)\)。這樣就證明了\(\Lambda(\mathscr C)\)為\(\pi\)系。
$\blacktriangleright$
關於“單調類”一詞,我們介紹它的準確定義,以瞭解爲何前述定理被稱爲單調類定理。此部分來自書中習題。
\(\def\) \(\mathscr M\subseteq\mathscr P(\Omega)\) 稱爲單調類,若:
- \(A_n\in\mathscr M,A_n\uparrow\ \Longrightarrow\bigcup\limits_{n=1}^\infty A_n\in\mathscr M\).
- \(A_n\in\mathscr M,A_n\downarrow\ \Longrightarrow\bigcup\limits_{n=1}^\infty A_n\in\mathscr M\).
我們可以發現,若一個集代數同時也是單調類,則它也是\(\sigma\)-代數。仿照上述單調類定理的證明,我們有:
\(\thm\) 若\(\mathscr A\) 為\(\Omega\)上的集代數,則包含\(\mathscr A\)的最小單調類為\(\sigma(\mathscr A)\)。
\(\blacktriangleleft\) 其實,設\(\mathscr F\)為包含\(\mathscr A\)的最小單調類,則對\(A\in\mathscr F\),定義\(\mathscr A_A=\{B\in\mathscr F|B\cap A\in\mathscr F\}\)。則\(\mathscr A_A\)亦為單調類,進而均爲\(\mathscr F\)。故\(\mathscr F\)為\(\pi\)類;又令\(\mathscr B=\{B\in\mathscr F|B^c\in \mathscr F\}\),則其亦爲單調類,進而\(\mathscr F=\mathscr B\),故\(\mathscr F\)為集代數,進而可知其為\(\sigma\)-代數。
\(\blacktriangleright\)
$\S 1.2 \ $測度的構造
\(\def\) 設\(\mathscr C\subseteq \mathscr P(\Omega)\)為一個子集類。\(\mu:\mathscr C\to\overline{\mathbb R}_+=[0,+\infty]\),且不恆為\(+\infty\)。
-
若對任意滿足\(A,B\in\mathscr C,A\sqcup B\in\mathscr C\)的不交集合\(A,B\)都有$$\mu(A\sqcup B)=\mu(A)+\mu(B)$$ 則稱\(\mu\)為\(\mathscr C\)上的一個可加測度。
-
若對任意\(n\in\mathbb N_+,A_k\in\mathscr C(1\le k\le n)\)且兩兩不交,並滿足\(\bigcup\limits_{k=1}^nA_k\in\mathscr C\),都有
\[\mu\left(\bigsqcup\limits_{k=1}^nA_k\right)=\sum\limits_{k=1}^n\mu(A_k) \]則稱\(\mu\)為\(\mathscr C\)上的一個有限可加測度。
-
若對任意滿足\(A_n\in\mathscr C(n\in\mathbb N_+),\bigcup_{n=1}^\infty A_n\in\mathscr C\)且兩兩不交的\(A_n\),都有$$\mu\left(\bigsqcup\limits_{n=1}^\infty A_n\right)=\sum\limits_{n=1}^\infty\mu(A_n)$$ 則稱\(\mu\)為\(\mathscr C\)上的一個測度(或稱\(\sigma\)-可加測度)。
我們可以知道,無論\(\mu\)滿足何種可加性,都有\(\mu(\varnothing)=0\)。
\(\def\) 對上述定義中的\(\mu\),若\(\forall A\in\mathscr C,\mu(A)<+\infty\),則稱\(\mu\)是有限的。若對任意\(A\in\mathscr C\),存在\(\{A_n\}_{n=1}^\infty\subseteq\mathscr C\),滿足\(\mu(A_n)<+\infty(n\in\mathbb N_+)\)且\(\bigcup_{n=1}^\infty A_n=A\),則稱\(\mu\)是\(\sigma-\)有限的。
當\(\mathscr F\)是\(\Omega\)上的\(\sigma\)-代數,\(\mu\)為其上的測度時,稱\((\Omega,\mathscr F,\mu)\)為測度空間,\(\mathscr F\)中元素稱爲可測集。若\(\mu(\Omega)=1\),則\(\mu\)稱爲概率測度,稱\((\Omega,\mathscr F,\mu)\)為概率空間。
以下我們將考慮將半集代數上的測度擴張到其生成的\(\sigma-\)代數上。
\(\thm\)(測度擴張定理)設\(\mu\)為\(\Omega\)的半集代數\(\mathscr S\)上測度,則\(\mu\)在\(\sigma(\mathscr S)\)上存在一個擴張。特別地,若\(\mu\)是\(\sigma-\)有限的,則此擴張唯一。
爲了證明此定理,我們需要一些結論。
\(\thm\) 設\(\mu\)為\(\Omega\)的半集代數\(\mathscr S\)上測度/有限可加測度,則\(\mu\)在\(\mathscr A(\mathscr S)\)上存在一個唯一擴張\(\tilde\mu\)。
\(\blacktriangleleft\) 其實,由於\(\forall A\in\mathscr A(\mathscr S)\),均存在\(B_1,\cdots,B_n\in\mathscr S\)使得\(A=\bigsqcup\limits_{i=1}^nB_i\)。因此我們可以定義
易見擴張只能有此形式,故若擴張存在必唯一。下驗證此定義是良定的。事實上,若\(A=\bigsqcup\limits_{j=1}^mC_j\),則
以下只需説明,若 \(\mu\)為測度,則\(\tilde\mu\)亦\(\sigma-\)可加。(同理可説明,若\(\mu\)有限可加,則\(\tilde\mu\)亦有限可加)。
設\(A=\bigsqcup\limits_{n=1}^\infty B_n\),其中\(A,B_n\in\mathscr A(\mathscr S)\)。再假設\(A=\bigsqcup\limits_{i=1}^LA_i,B_n=\bigsqcup\limits_{j=1}^{J_n}B_{nj}\),其中\(A_i,B_{nj}\in\mathscr S\)。
令\(C_{nij}=A_i\cap B_{nj}\),則
\(\tilde\mu(A)=\sum\limits_{i=1}^L \mu(A_i)\\ =\sum\limits_{i=1}^L\mu\left(\bigsqcup\limits_{n=1}^\infty\bigsqcup\limits_{j=1}^{J_n}C_{nij}\right)\\ =\sum\limits_{i=1}^L\sum\limits_{n=1}^\infty\sum\limits_{j=1}^{J_n}\mu(C_{nij})\\ =\sum\limits_{n=1}^\infty\sum\limits_{j=1}^{J_n}\sum\limits_{i=1}^L\mu(C_{nij})\\ =\sum\limits_{n=1}^\infty\mu\left(\bigsqcup\limits_{j=1}^{J_n}\bigsqcup\limits_{i=1}^LC_{nij}\right)\\ =\sum\limits_{n=1}^\infty \tilde\mu(B_n)\)
進而得到結論。
\(\blacktriangleright\)
\(\prop\) 若\(\mu\) 是半集代數\(\mathscr S\)上的有限可加測度,\(A,A_1,\cdots,A_n\in\mathscr S\)且\(\bigsqcup\limits_{i=1}^n A_i\subseteq A\),則
\(\blacktriangleleft\)其實,考慮\(\mu\)在\(\mathscr A(\mathscr S)\)上的擴張\(\tilde\mu\),則\(\sum\limits_{k=1}^n\mu(A_k)=\tilde\mu\left(\bigsqcup\limits_{k=1}^nA_k\right)\le\tilde\mu(A)=\mu(A)\)。
\(\blacktriangleright\)
類似,我們可以得到測度與有限可加測度的次可加性與次\(\sigma\)可加性。
\(\prop\)
-
(次可加性)\(\mu\)是有限可加測度,則若\(A\subseteq\bigcup\limits_{k=1}^nA_k\),則\(\mu(A)\le\sum\limits_{k=1}^n\mu(A_k)\)。(\(A,A_1,\cdots,A_n\in\mathscr S\))
-
(次\(\sigma\)可加性)\(\mu\)是測度,則若\(A\subseteq\bigcup\limits_{n=1}^\infty A_n\),則\(\mu(A)\le\sum\limits_{n=1}^\infty\mu(A_k)\)。(\(A,A_1,\cdots\in\mathscr S\))
\(\blacktriangleleft\)其實,由於兩命題高度相似,我們只需證明第二個。
對\(n\in\mathbb N_+\),令\(B_n=\left(\bigcup\limits_{k=1}^nA_k\right)\backslash\left(\bigcup\limits_{k=1}^{n-1}A_k\right)\)。則\(B_n\)兩兩不交,且\(\bigsqcup\limits_{n=1}^\infty B_n=\bigcup\limits_{n=1}^\infty A_n\)。
考慮\(\mu\)在\(\mathscr A(\mathscr S)\)上的擴張\(\tilde\mu\)。則
$\blacktriangleright$
下面我們來定義外測度的概念。
\(\def\) 設\(\mu^\ast:\mathscr P(\Omega)\to[0,+\infty]\)滿足:
-
\(\mu^\ast(\varnothing)=0\);
-
(不降性)若\(A\subseteq B\),則\(\mu^\ast(A)\le\mu^\ast(B)\);
-
(次\(\sigma\)可加性)\(A_n\subseteq \Omega\),則\(\mu^\ast\left(\bigcup\limits_{n=1}^\infty A_n\right)\le\sum\limits_{n=1}^\infty\mu^\ast(A_n)\)。
則稱\(\mu^\ast\)為\(\Omega\)上的一個外測度。
下面的引理説明了外測度與測度之間的關系。
\(\lm\)設\(\mu\)為半集代數\(\mathscr S\)上的測度。對\(A\subseteq\Omega\),令
則\(\mu^\ast\)為一外測度,且\(\mu^\ast|_{\mathscr S}=\mu\)。
\(\blacktriangleleft\)其實,首先證明\(\mu^\ast\)與\(\mu\)在\(\mathscr S\)上一致。若\(A\in\mathscr S\),則對於滿足\(A\subseteq\bigcup\limits_{n=1}^\infty A_n\)的\(A_1,\cdots\),都有\(\mu(A)\le\sum\limits_{n=1}^\infty\mu(A_n)\),故\(\mu(A)\le\mu^\ast(A)\)。而\(A\subseteq A\cup\bigcup\limits_{n=1}^\infty\varnothing\),故\(\mu^\ast(A)\le\mu(A)\),進而\(\mu(A)=\mu^\ast(A)\)。
再説明\(\mu^\ast\)不降。設\(A\subseteq B\),則對任意滿足\(B\subseteq\bigcup\limits_{n=1}^\infty B_n\)的\(B_1,\cdots\)都有\(A\subseteq\bigcup\limits_{n=1}^\infty B_n\)。進而\(\mu^\ast(A)\le\sum\limits_{n=1}^\infty\mu(B_n)\)。故\(\mu^\ast(A)\le\mu^\ast(B)\)。
最後説明次\(\sigma\)可加性。設\(A_1,\cdots\subseteq\Omega\)。令\(A=\bigcup\limits_{n=1}^\infty A_n\)。由下確界定義,對任意\(\varepsilon>0\),都存在\(A_{ij}\in\mathscr S(i,j\in\mathbb N_+)\)使得\(A_n\subseteq\bigcup\limits_{m=1}^\infty A_{nm}\),且\(\sum\limits_{m=1}^\infty\mu(A_{nm})\le\frac\varepsilon{2^n}+\mu^\ast(A_n)\)。進而
由\(\varepsilon\)的任意性即知\(\mu^\ast(A)\le\sum\limits_{n=1}^\infty\mu^\ast(A_n)\)。
$\blacktriangleright$
\(\def\) 設\(\mu^\ast\)為\(\Omega\)的外測度,若\(\forall D\subseteq\Omega\)都有\(\mu^\ast(D)=\mu^\ast(A\cap D)+\mu^\ast(A^c\cap D)\),則稱\(A\)為可測集。
\(\rmk\)條件等價於\(\mu^\ast(D)\ge\mu^\ast(A\cap D)+\mu^\ast(A^c\cap D)\)。
\(\thm\)設\(\mu^\ast\)為\(\Omega\)的外測度。令\(\mathscr A_{\mu^\ast}\)為可測集全體,則:
-
\(\mathscr A_{\mu^\ast}\)是\(\Omega\)的一個\(\sigma\)代數。
-
若\(A=\bigsqcup\limits_{n=1}^\infty A_n\)且\(A_n\in\mathscr A_{\mu^\ast}\),則對任意\(D\subseteq\Omega\)都有
\[\mu^\ast(A\cap D)=\sum\limits_{n=1}^\infty\mu^\ast(A_n\cap D) \] -
\(\mu^\ast\)限制在\(\mathscr A_{\mu^\ast}\)上是一個測度。
\(\blacktriangleleft\)其實,我們先證明\(\mathscr A_{\mu^\ast}\)是集代數。由對稱性知若\(A\in\mathscr A_{\mu^\ast}\)則\(A^c\in\mathscr A_{\mu^\ast}\)。而若\(A,B\in\mathscr A_{\mu^\ast}\),則
故\(A\cup B\in\mathscr A_{\mu^\ast}\)。再説明,若\(A_n\in\mathscr A_{\mu^\ast}(n\in\mathbb N_+)\)兩兩不交,則\(\bigsqcup\limits_{n=1}^\infty A_n\in\mathscr A_{\mu^\ast}\)。對\(D\subseteq\Omega\)有
其中最後一個等號利用了不交性。
兩式相加可得
以下證明第二條性質。
設\(A_n\)兩兩不交,上述的不等號必須取等,特別地即有
要説明\(\mu^\ast\)在\(\mathscr A_{\mu^\ast}\)上是一個測度,只需在第二條中取\(D=\Omega\)即知可數可加性。
\(\blacktriangleright\)
現在我們可以證明擴張定理。在\(\mathscr S\)為集代數時,此定理亦稱卡拉西奧多里(Carathéodory)定理。
\(\blacktriangleleft\)其實,對於存在性,我們令\(\mu^\ast\)為\(\mu\)引出的外測度,只需説明,\(\mathscr S\subseteq\mathscr A_{\mu^\ast}\)。
設\(A\in\mathscr S\)。設\(D\subseteq\Omega\),若\(\mu^\ast(D)=+\infty\)已證。下設\(\mu^\ast(D)<+\infty\),則對任意\(\varepsilon>0\),存在\(A_1,\cdots\in\mathscr S\)使得\(D\subseteq\bigcup\limits_{n=1}^\infty A_n\)且\(\mu^\ast(D)\ge\varepsilon+\sum\limits_{n=1}^\infty \mu(A_n)\)。
由於\(\mathscr S\)是半集代數,設\(A^c=\bigcup\limits_{i=1}^mB_i\),其中\(B_1,\cdots,B_m\in\mathscr S\)且兩兩不交。則
由\(\varepsilon\)的任意性即知\(\mu^\ast(A\cap D)+\mu^\ast(A^c\cap D)\le\mu^\ast(D)\),故\(A\in\mathscr A_{\mu^\ast}\)。
以下假設\(\mu\)在\(\mathscr S\)上是\(\sigma\)有限的,我們説明此擴張是唯一的。事實上我們可假設\(\mu\)是其自身在\(\mathscr A(\mathscr S)\)上的擴張。則存在兩兩不交的\(D_n\in\mathscr A(\mathscr S)\)使得\(\Omega=\bigsqcup\limits_{n=1}^\infty D_n\),且\(\mu(D_n)<+\infty\)。
若\(\mu_1,\mu_2\)為\(\mu\)在\(\sigma(\mathscr S)\)上的兩個擴張,令
易見\(\Lambda\)是包含\(\mathscr S\)的\(\lambda\)系,而\(\mathscr S\)為\(\pi\)類,由單調類定理即知\(\Lambda=\sigma(\mathscr S)\)。
故對任意\(A\in\sigma(\mathscr S)\)都有
進而\(\mu_1=\mu_2\)。
\(\blacktriangleright\)
下面我們討論勒貝格測度。
\(\prop\) 設\(\mathscr S^n=\{(a_1,b_1]\times\cdots\times(a_n,b_n]=:(a,b]|-\infty\le a_i\le b_i\le+\infty\}\)上定義了體積測度\(\lambda\),滿足
它所對應的外測度\(\lambda^\ast\)稱爲\(\mathbb R^n\)上的勒貝格( Lebesgue)外測度。由此決定了測度空間\((\mathbb R^n,\mathscr A_{\lambda^\ast},\lambda^\ast)\),\(\mathscr A_{\lambda^\ast}\)中的元素稱爲勒貝格可測集,\(\lambda^\ast\)在\(\mathscr B^n\)上的限制稱爲波萊爾-勒貝格測度,也稱爲波萊爾測度,仍然記作\(\lambda\)。
\(\blacktriangleleft\) 其實,我們只需要説明\(\lambda\)確實是\(\mathscr S^n\)上的一個測度。(易見其為\(\sigma\)有限的)首先,\(\lambda(\varnothing)=0\)。
若\((a_1,b_1]\times\cdots\times(a_n,b_n]=\bigsqcup\limits_{i=1}^\infty\left((a_1^i,b_1^i]\times\cdots\times(a_n^i,b_n^i]\right)\)
若某個左式坐標分量為\(\pm\infty\),則右式亦然,進而兩側的\(\lambda\)值將相等,反之亦然。故下設所有\(a,b\in\mathbb R\)。
令\(A=(a_1,b_1]\times\cdots\times(a_n,b_n],A_i=(a_1^i,b_1^i]\times\cdots\times(a_n^i,b_n^i]\)。我們將證明,\(\lambda(A)=\sum\limits_{i=1}^\infty\lambda(A_i)\)。這樣就證明了原命題。
對任意\(\varepsilon>0\),令
\(A_i^\prime=(a_1^i-\frac\varepsilon{2^i},b_1^i+\frac\varepsilon{2^i})\times\cdots\times(a_n^i-\frac\varepsilon{2^i},b_n^i+\frac\varepsilon{2^i}),A^\prime=[a_1,b_1]\times\cdots\times[a_n,b_n]\)。則\(A_i^\prime\)為開集,\(A^\prime\)為緊集。由海涅-波萊爾定理可知,存在\(m\in\mathbb N_+\)使得\(A^\prime\subseteq A_1^\prime\cup\cdots\cup A_m^\prime\)。
再令\(A_i^{\prime\prime}=(a_1^i-f_i(\varepsilon),b_1^i+f_i(\varepsilon)]\times\cdots\times(a_n^i-f_i(\varepsilon),b_n^i+f_i(\varepsilon)]=:(c_1^i,d_1^i]\times\cdots\times(c_n^i,d_n^i]\),其中\(f_i(\varepsilon)\)滿足\(f_i(\varepsilon)>0\)且\(\lambda(A_i^{\prime\prime})\le\lambda(A_i)+\frac\varepsilon{2^i}\)。則\(A\subseteq A_1^{\prime\prime}\cup\cdots\cup A_m^{\prime\prime}\)。我們去證明\(\lambda(A)\le\sum\limits_{i=1}^m\lambda(A_i^{\prime\prime})\)。
將\(c_1^1,\cdots,c_1^m,d_1^1,\cdots,d_1^m\)與\(a_1,b_1\)中的從小到大排序為\(x_1^1,\cdots,x_{2m+2}^1\)。類似定義\(x_0^i,\cdots,x_{2m+2}^i(1\le i\le n)\)。
對\(j_i\in[1,2m+1](1\le i\le n)\),令\(A_{j_1,\cdots,j_n}=A\cap\left((x_{j_1}^1,x_{j_1+1}^1]\times\cdots\times(x_{j_n}^n,x_{j_n+1}^n]\right)\)。則其要麽為\(\varnothing\)要麽為\((x_{j_1}^1,x_{j_1+1}^1]\times\cdots\times(x_{j_n}^n,x_{j_n+1}^n]\)。類似對\(A_i^{\prime\prime}\)可定義\(A_{j_1,\cdots,j_n}^i\)。多重求和可知
其中小於等於號是由於,若\(A_{j_1,\cdots,j_n}=\varnothing\)已證明;否則必定有一個\(i\)使得\(A_i^{\prime\prime}\cap A_{j_1,\cdots,j_n}\neq\varnothing\),進而\(A_{j_1,\cdots,j_n}^i=A_{j_1,\cdots,j_n}\)。
因此,
進而由\(\varepsilon\)的任意性,
(注意到這一部分的證明沒有用到兩兩不交的性質,也就是我們實際證明了\(\sigma\)次可加性。)
下面證明另一方向。這相當於,對任意\(m\in\mathbb N_+\)都有\(\lambda(A)\ge\sum\limits_{i=1}^m\lambda(A_i)\)。
我們仿照上述關於分割的寫法。
令\(a_1^1,\cdots,a_1^m,b_1^1,\cdots,b_1^m\)與\(a_1,b_1\)中的從小到大排序為\(x_1^1,\cdots,x_{2m+2}^1\)。類似定義\(x_0^i,\cdots,x_{2m+2}^i(1\le i\le n)\)。
對\(j_i\in[1,2m+1](1\le i\le n)\),令\(A_{j_1,\cdots,j_n}=A\cap\left((x_{j_1}^1,x_{j_1+1}^1]\times\cdots\times(x_{j_n}^n,x_{j_n+1}^n]\right)\)。則其要麽為\(\varnothing\)要麽為\((x_{j_1}^1,x_{j_1+1}^1]\times\cdots\times(x_{j_n}^n,x_{j_n+1}^n]\)。類似對\(A_i\)可定義\(A_{j_1,\cdots,j_n}^i\)。多重求和可知
其中大於等於號是由於,若\(A_{j_1,\cdots,j_n}=\varnothing\)則因\(A_1,\cdots,A_m\subseteq A\),知\(A_{j_1,\cdots,j_n}^i=\varnothing(1\le i\le m)\);
若\(A_{j_1,\cdots,j_n}\neq\varnothing\),則由兩兩不交,至多只有一個\(i\)滿足\(A_{j_1,\cdots,j_n}^i\neq\varnothing\),進而
這樣就證明了原命題。
$\blacktriangleright$
\(\prop\) 設\(F:\mathbb R^n\to\mathbb R\)滿足:
- 對任意\(a=(a_1,\cdots,a_n),b=(b_1,\cdots,b_n)\in\mathbb R^n\)且\(a_i\le b_i(1\le i\le n)\)(記為\(a\le b\)),都有
其中\(e_l\)為第\(l\)個單位向量。
2. \(F(x_1,\cdots,x_n)\)關於\(x_i\)右連續(\(\forall 1\le i\le n\))
則存在唯一的\(\mathscr B^n\)上的\(\sigma\)有限測度\(\mu_F\),滿足對任意\(a\le b\)都有\(\mu_F((a,b])=\Delta_{a,b}F\)。其中\((a,b]=(a_1,b_1]\times\cdots\times(a_n,b_n]\)。
\(\mu_F\)稱爲由\(F\)決定的勒貝格-斯蒂爾吉斯(Stieljes)測度。
\(\blacktriangleleft\)其實,如果在\(\mathscr S^n\)上定義\(\lambda_F((a,b])=\Delta_{a,b}F\),則只需説明\(\lambda_F\)確實是\(\mathscr S^n\)上的測度。事實上,\(\Delta_{a,b}\)的定義保證了\(\lambda_F\)可以像上個命題中一樣相加,進而多重求和。
\(\blacktriangleright\)
\(\S1.3\) 測度空間的性質
\(\prop\)設\((\Omega,\mathscr F,\mu)\)是測度空間,則:
-
若\(\{A_n\}_{n=1}^\infty\subseteq\mathscr F\)且單調遞增,則
\[\lim\limits_{n\to\infty}\mu(A_n)=\mu\left(\bigcup\limits_{n=1}^\infty A_n\right) \] -
若\(\{A_n\}_{n=1}^\infty\subseteq\mathscr F\)且單調遞減,而且存在\(n\in\mathbb N_+\)使得\(\mu(A_n)<+\infty\),則
\[\lim\limits_{n\to\infty}\mu(A_n)=\mu\left(\bigcap\limits_{n=1}^\infty A_n\right) \]
\(\blacktriangleleft\)其實,第二個命題在以\(A_m\)差去兩式後即化爲第一問。
對於第一問,令\(B_n=A_n\backslash A_{n-1}\),則\(\{B_n\}\)兩兩不交,且\(\bigcup\limits_{n=1}^\infty A_n=\bigcup\limits_{n=1}^\infty B_n\)。由\(\mu\)的\(\sigma\)可加性即得。
\(\blacktriangleright\)
容易得到此命題的所謂“逆命題”:
\(\prop\)若\(\mu\)是\(\Omega\)上集代數\(\mathscr A\)上的可加測度,則若\(\mu\)滿足下列條件之一,則\(\mu\)是測度:
-
若\(\{A_n\}_{n=1}^\infty\subseteq\mathscr A\)且單調遞增,則
\[\lim\limits_{n\to\infty}\mu(A_n)=\mu\left(\bigcup\limits_{n=1}^\infty A_n\right) \] -
若\(\{A_n\}_{n=1}^\infty\subseteq\mathscr A\)且單調遞減,而且存在\(n\in\mathbb N_+\)使得\(\mu(A_n)<+\infty\),則
\[\lim\limits_{n\to\infty}\mu(A_n)=\mu\left(\bigcap\limits_{n=1}^\infty A_n\right) \]
下面來討論測度的完全化。
\(\def\)設\((\Omega,\mathscr F,\mu)\)為測度空間。若對於\(B\subseteq \Omega\)滿足,存在\(A\in\mathscr F\)使得\(B\subseteq A,\mu(A)=0\),則稱\(B\)為\(\mu\)-零集。若每個\(\mu-\)零集均爲可測集,則稱\((\Omega,\mathscr F,\mu)\)為完全測度空間,\(\mu\)稱爲完全測度。
\(\thm\)
-
設\((\Omega,\mathscr F,\mu)\)是測度空間,令
\[\overline{\mathscr F}=\{A\Delta N|A\in\mathscr F,N\text{為零集}\}=\{A\cup N|A\in\mathscr F,N\text{為零集}\} \]\(\overline\mu(A\Delta N)=\mu(A)\),則\((\Omega,\overline{\mathscr F},\overline\mu)\)為一完全測度空間,稱爲\((\Omega,\mathscr F,\mu)\)的完全化。
-
設\(\mu\)為半集代數\(\mathscr S\)上的\(\sigma\)有限測度,\(\mu^\ast\)為其引出的外測度,則\((\Omega,\mathscr A_{\mu^\ast},\mu^\ast)\)是\((\Omega,\sigma(\mathscr S),\mu)\)的完全化。
以下證明來自嚴士健,王雋驤,劉秀芳所著的《概率論基礎》(科學出版社):
\(\blacktriangleleft\)其實,對於第一問,我們先證明\(\overline{\mathscr F}\)的兩個定義等價。這是由於對於零集\(N\),設\(N\subseteq B\in\mathscr F\)使得\(\mu(B)=0\),則
而由於零集的可數並仍然為零集,且\((A\cup N)^c=(A^c)\cup(B\backslash(A\cup N))\),故\(\overline{\mathscr F}\)為一\(\sigma\)代數。
下面驗證\(\overline\mu\)定義的合理性,並説明其為測度。設\(A_1,A_2\in\mathscr F\),\(N_1,N_2\)是零集,對應零測集\(B_1,B_2\)。若\(A_1\Delta N_1=A_2\Delta N_2\),則\((A_1\Delta A_2)\Delta(N_1\Delta N_2)=(A_1\Delta N_1)\Delta(A_2\Delta N_2)=\varnothing\),進而\(A_1\Delta A_2=N_1\Delta N_2\)為零集。故\(\mu(A_1\Delta A_2)=0\),進而\(\mu(A_1)=\mu(A_2)=\mu(A_1\cap A_2)\)。而利用\(\mu\)的\(\sigma\)可加性即可説明,\(\overline\mu\)亦有\(\sigma\)可加性,即知其為測度。
然後説明\((\Omega,\overline{\mathscr F},\overline\mu)\)是完全的。若\(M\subseteq \Omega\)使得\(M\subseteq A\cup N\),滿足\(A\)為\(\mu-\)可測,\(N\)為零集,對應\(\mu-\)零測集\(B\),\(\overline\mu(A\cup N)=0\)。則\(M\subseteq A\cup B\),而\(\mu(A)=\mu(B)=0\),故\(M\)為零集,進而\(\overline \mu\)-可測。
對於第二問,我們先證明,若\(A\subseteq\Omega\)使得\(\mu^\ast(A)<+\infty\),則存在\(A\subseteq B\in\sigma(\mathscr S)\),使得對一切滿足\(C\subseteq B\backslash A\)且\(C\in\sigma(\mathscr S)\)的\(C\)都有\(\mu^\ast(C)=0\)。(此時\(B\)稱爲\(A\)的可測覆蓋)
事實上,由於\(A\)可測,知對任意\(n\in\mathbb N_+\)都存在\(\{F_{nk}\}\subseteq\mathscr S\)使得\(A\subseteq\bigcup\limits_{k=1}^\infty F_{nk}=:B_n,\mu^\ast(A)\ge\sum\limits_{k=1}^\infty\mu(F_{nk})-\frac1n\ge\mu(B_n)-\frac1n\)。令\(B=\bigcap\limits_{n=1}^\infty B_n\supseteq A\),則\(B\in\sigma(\mathscr S)\)且\(\mu(B)=\mu^\ast(A)\)。
若\(C\subseteq B\backslash A\)且\(C\in \sigma(\mathscr S)\),則\(\mu^\ast(A)\le\mu(B\backslash C)=\mu(B)-\mu(C)=\mu^\ast(A)-\mu(C)\),進而\(\mu(C)=0\)。
設\(\overline{\mathscr A}=\overline{\sigma(\mathscr S)},\mathscr A^\ast=\mathscr A_{\mu^\ast}\),則只需證明\(\overline{\mathscr A}=\mathscr A^\ast\)。(\(\mu^\ast|_{\mathscr A^\ast}=\mu\)是平凡的)
由於\(\mu\)-零集均爲\(\mu^\ast\)-零測的,進而\(\overline{\mathscr A}\subseteq\mathscr A^\ast\)。下設\(A\in\mathscr A^\ast\),由於\(\mu\)是\(\sigma\)有限的可不妨假設\(\mu^\ast(A)<+\infty\)。設\(B\)為其可測覆蓋,\(C\)為\(B\backslash A\)的可測覆蓋,則\(\mu^\ast(C)=0\)。故\(A=(B\backslash C)\cup(A\cap C)\in\overline{\mathscr A}\)。
\(\blacktriangleright\)
以下考慮測度的逼近問題。
\(\prop\)設\(\mu\)是半集代數\(\mathscr S\)上的測度,\(\mu^\ast\)為其對應的外測度。則對任意滿足\(\mu^\ast(A)<+\infty\)的\(A\in\mathscr A_{\mu^\ast}\)與\(\varepsilon>0\),都存在\(A_\varepsilon\in\mathscr A(\mathscr S)\)使得
\(\blacktriangleleft\)其實 ,存在\(\{B_n\}\subseteq\mathscr S\)使得\(A\subseteq \bigcup\limits_{n=1}^\infty B_n\)且\(\mu^\ast(A)\le\sum\limits_{n=1}^\infty\mu(B_n)<\mu^\ast(A)+\varepsilon\)。
由收斂性,存在\(N\in\mathbb N_+\)使得\(\sum\limits_{n=N+1}^\infty\mu(B_n)<\varepsilon\)。令\(A_\varepsilon=\bigcup\limits_{n=1}^N B_n\),則
$\blacktriangleright$
若設\(\lambda\)為勒貝格測度,我們還有:
\(\prop\)設\(A\)勒貝格可測,則
\(\blacktriangleleft\)其實,我們只需分別證明大於等於和小於等於。對於第一個不等號,不妨設\(\lambda(A)<+\infty\),由上述命題和次\(\sigma\)可加性即得。(可數個開集之並仍然開)
對於第二個不等號,若\(A\)有界,則\(A^c\)亦勒貝格可測,對任意\(\varepsilon>0\),存在開集\(G\)使得\(G\supseteq \overline A\backslash A\)且\(\lambda(G)\le\lambda(\overline A\backslash A)+\varepsilon\)。令\(K=\overline A\backslash G\)為緊集,則\(\lambda(K)\ge\lambda(A)-\varepsilon,K\subseteq A\)。
若\(A\)無界,由於\(\lambda\)下連續,知\(\lambda(A)=\lim\limits_{m\to\infty}\lambda(A\cap[-me,me])\),其中\(e=(1,\cdots,1)\)。對任意\(b<\lambda(A)\),存在\(m\in\mathbb N_+\)使得\(\lambda(A\cap[-me,me])>b\),進而存在緊集\(K\subseteq A\cap[-me,me]\subseteq A\)使得\(\lambda(K)>b\)。
\(\blacktriangleright\)
\(\S2\) 可測函數與隨機變量
\(\S3\) 積分與數學期望
\(\S4\) 乘積測度與無窮乘積概率空間
\(\S5\) 不定積分與條件期望
\(\S5.1\) 符號測度的分解
\(\def\)設\(\mathscr A\subseteq\mathscr P(\Omega)\)是\(\Omega\)的一個集代數。\(\varphi:\mathscr A\to\mathbb R_{\infty}\)稱爲\(\mathscr A\)上的有限可加集函數,若\(\varphi(\varnothing)=0\)且若\(A_1,\cdots,A_n\in\mathscr A\)兩兩不交,則\(\varphi\left(\bigsqcup\limits_{k=1}^n A_k\right)=\sum\limits_{k=1}^n\varphi(A_k)\);\(\varphi\)稱爲\(\mathscr A\)上的\(\sigma\)可加集代數,若\(\varphi(\varnothing)=0\)且若\(A_1,A_2,\cdots\in\mathscr A,\bigsqcup\limits_{n=1}^\infty A_n\in\mathscr A\),則\(\varphi\left(\bigsqcup\limits_{n=1}^\infty A_n\right)=\sum\limits_{n=1}^\infty\varphi(A_n)\)。若\(\mathscr A\)為\(\sigma\)代數,其上的\(\sigma\)可加集代數稱爲符號測度。若\(\varphi\)值域在\(\mathbb R\)中,稱其為有限的。
\(\prop\)符號測度的值域至多只包含\(\pm\infty\)中一個。
我們注意到,固定可測函數\(f\),若\(\int_\Omega f\dd\mu\)存在,則\(\varphi(A)=\int_Af\dd\mu\)是一個符號測度,可以表示爲兩測度之差。現在我們希望對一般符號測度亦有如此分解。
\(\lm\)設\(\varphi\)是\((\Omega,\mathscr F)\)上的符號測度,則其下連續,即若\(\{A_n\}\subseteq\mathscr F\),且\(A_n\subseteq A_{n+1}\),則
且其上連續:若\(\{A_n\}\subseteq\mathscr F\),且\(A_{n+1}\subseteq A_n\),存在\(m\in\mathbb N_+\)使\(\varphi(A_m)\in\mathbb R\),則
\(\blacktriangleleft\)其實,對於下連續,令\(B_n=A_{n}\backslash A_{n-1}(n\in\mathbb N_+)\),其中\(A_0=\varnothing\)。則\(\{B_n\}\)兩兩不交且\(\bigcup\limits_{n=1}^\infty A_n=\bigsqcup\limits_{n=1}^\infty B_n\)。故
對於上連續,不妨設\(\varphi(A_1)\in\mathbb R\),則令\(B_n=A_1\backslash A_n\)遞增,則\(\varphi(B_n)=\varphi(A_1)-\varphi(A_n)\),且\(\bigcap\limits_{n=1}^\infty A_n=A_1\backslash\left(\bigcup\limits_{n=1}^\infty B_n\right)\),進而
$\blacktriangleright$
此引理的“逆定理”亦成立:
\(\lm\)設\((\Omega,\mathscr F)\)為可測空間,\(\varphi\)為其上的有限可加集代數,若\(\varphi\)滿足以下條件之一,則其為\(\mathscr F\)上的符號測度:
-
\(\varphi\)下連續;
-
\(\varphi\)有限,且在\(\varnothing\)處上連續。
\(\blacktriangleleft\)其實,若\(\varphi\)下連續,對於兩兩不交的\(\{A_n\}\subseteq\mathscr F\),令\(B_n=\bigcup\limits_{k=1}^nA_k\),則\(B_n\)遞增且\(\varphi(B_n)=\sum\limits_{k=1}^n\varphi(A_k)\),進而
若\(\varphi\)有限且在\(\varnothing\)處上連續,對於遞增的\(A_1,A_2,\cdots\),令\(A=\bigcup\limits_{n=1}^\infty A_n\),\(B_n=A\backslash A_n\)。則\(\bigcap\limits_{n=1}^\infty B_n=\varnothing\),進而
$\blacktriangleright$
\(\thm\)設\(\varphi\)是\((\Omega,\mathscr F)\)上的符號測度,則存在\(P,N\in\mathscr F\)使得\(\varphi(P)=\sup\limits_{A\in\mathscr F}\varphi(A),\varphi(N)=\inf\limits_{A\in\mathscr F}\varphi(A)\),且\(P\cap N=\varnothing,P\cup N=\Omega\)。
\(\blacktriangleleft\)其實,若對任意\(A\in\mathscr F\)都有\(\varphi(A)<+\infty\),則存在\(\{A_n\}_{n=1}^\infty\subseteq\mathscr F\)使得\(\lim\limits_{n\to\infty}\varphi(A_n)=\sup\limits_{A\in\mathscr F}\varphi(A)\)。令\(A=\bigcup\limits_{n=1}^\infty A_n\)。我們將把\(A\)無限分“細”。
考慮\(A\)的第\(n\)次分劃為\(A=\bigcup\limits_{m=1}^{2^n}A_{nm}\),其中\(A_{nm}=\bigcap\limits_{k=1}^n\tilde A_k\),\(\tilde A_k=A_k\)或\(A\backslash A_k\)。因此\(n^\prime>n\)時,\(A_{nm}\)是若干\(A_{n^\prime m^\prime}\)之無交並。
令\(B_n=\bigcup\limits_{m=1}^{2^n}A_{nm}^+\),其中\(A_{nm}^+=\begin{cases}A_{nm}&\varphi(A_{nm})>0\\\varnothing&\varphi(A_{nm})\le0\end{cases}\)。因此對於\(N>n\),要麽\(A_{Nm}^+\subseteq B_n\),要麽\(A_{Nm}^+\cap B_n=\varnothing\)。進而
故由無交性,\(\varphi(B_{nN})\ge\varphi(B_n)\ge\varphi(A_n)\)。令\(P_n=\bigcup\limits_{i=n}^\infty B_i\)。則若令\(N\to\infty\),則由下連續性,\(\varphi(P_n)\ge\varphi(B_n)\ge\varphi(A_n)\)。而\(\varphi(P_n)\in\mathbb R_+\),由上連續性,令\(P=\bigcap\limits_{n=1}^\infty P_n=\overline\lim\limits_{n\to\infty} B_n\),則\(\varphi(P)\ge\sup\limits_{B\in\mathscr F}\varphi(B)\),故\(P\)即爲所求。
令\(N=P^c\),若\(\varphi(\Omega)=-\infty\),則\(\varphi(N)=-\infty=\inf\limits_{A\in\mathscr F}\varphi(A)\);若\(\varphi(\Omega)>-\infty\),則\(\varphi\)有限,此時對任意\(A\in\mathscr F,\varphi(A)=\varphi(\Omega)-\varphi(A^c)\ge\varphi(\Omega)-\varphi(P)=\varphi(N)\)。
對於有\(A\in\mathscr F\)使得\(\varphi(A)=+\infty\)的情況,可知\(\varphi\)不取\(-\infty\),此時對\(-\varphi\)討論即可。
\(\blacktriangleright\)
\(\thm\)(哈恩(Hahn)分解定理)設\(\varphi\)是\((\Omega,\mathscr F)\)上的符號測度,則:
-
存在\(P,N\in\mathscr F\)使得\(N=P^c\),且對任意\(A\in\mathscr F\)都有 \(\varphi(A\cap P)=\sup\limits_{B\in\mathscr F\cap A}\varphi(B),\varphi(A\cap N)=\inf\limits_{B\in\mathscr F\cap A}\varphi(B)\),其中\(\mathscr F\cap A=\{B\cap A|B\in\mathscr F\}\)。
-
對任意\(A\in\mathscr F\),令\(\varphi^+(A)=\varphi(A\cap P),\varphi^-(A)=-\varphi(A\cap N),|\varphi|=\varphi^++\varphi^-\)。則\(\varphi^+,\varphi^-,|\varphi|\)均爲\(\mathscr F\)上的測度,且\(\varphi=\varphi^+-\varphi^-\),\(\varphi^+,\varphi^-\)中有一個有限。三者分別稱爲\(\varphi\)的上、下、全變差。
\(\blacktriangleleft\)其實,對於第一問,我們只需説明前述定理中的\(P,N\)滿足要求。若存在\(B\in\mathscr F\cap A\)使得\(\varphi(B)>\varphi(A\cap P)\),則\(\varphi(A\cap P)<+\infty\),故
或者\(\varphi(B)=+\infty\),此時\(\varphi(A)=+\infty\),但\(\varphi(A\cap P)<+\infty,\varphi(P)=+\infty\),故\(\varphi(A^c\cap P)=\varphi(A\cap N)=+\infty\),進而\(\varphi(N)=+\infty\),故\(\varphi\equiv+\infty\),矛盾!
若\(\varphi(A\cap N)=-\infty\)自然成立;否則,知\(\varphi(A)>-\infty\),除非\(\varphi\equiv-\infty\)。這樣對任意\(B\in\mathscr F\cap A\)都有\(\varphi(B)=\varphi(A)-\varphi(A\backslash B)\ge\varphi(A)-\varphi(A\cap P)=\varphi(A\cap N)\)。
以下證明\(\varphi\)的上、下、全變差均爲測度。由於\(\varnothing\in\mathscr F\cap A\)知\(\varphi^+,\varphi^-\ge0\)。而對於兩兩不交的\(A_1,\cdots\),令\(A=\bigcup\limits_{n=1}^\infty A_n\),則
即證\(\varphi^+\)的\(\sigma\)可加性,同理就得,\(\varphi^+,\varphi^-,|\varphi|\)是測度。由定義即知\(\varphi=\varphi^+-\varphi^-\)。
\(\blacktriangleright\)
此定理也可對集代數上的\(\sigma\)可加集代數使用:
\(\thm\)
、
浙公网安备 33010602011771号