高等数学预习-中值定理(练习)

高等数学预习-中值定理(练习)

https://space.bilibili.com/42428180

辅助多项式法

构造函数 \(F(x) = f(x) - p(x)\),通过已知的 \(f(x)\) 函数值拟合出使 \(F(x)\)(或其导出函数)存在若干零点的多项式 \(p(x)\),对 \(F(x)\)(或其导出函数)使用罗尔中值定理、积分中值定理等可以得到关于 \(f(x)\)(及其导出函数)相关的信息。

下面是一些例题。

\(f(x)\)\([0, 4]\) 二阶可导,\(f(0) = 0\)\(f(1) = 1\)\(f(4) = 2\)。证明:\(\exists \xi \in (0, 4)\),使得 \(f^{''}(\xi) = -\frac{1}{3}\)

分析:

\(p(x) = ax^{2} + bx + c\)

\[\begin{cases} p(0) = c = f(0) = 0 \\ p(1) = a + b + c = f(1) = 1 \\ p(4) = 16a + 4b + c = f(4) = 2 \\ \end{cases} \]

解得 \(p(x) = -\frac{1}{6}x^{2} + \frac{7}{6}x\)

证明:

\(F(x) = f(x) + \frac{1}{6}x^{2} - \frac{7}{6}x\),有 \(F(0) = F(1) = F(4) = 0\)\(F^{'}(x) = f^{'}(x) + \frac{1}{3}x - \frac{7}{6}\)\(F^{''}(x) = f^{''}(x) + \frac{1}{3}\)

由罗尔中值定理,\(\exists \xi_{1} \in (0, 1), \xi_{2} \in (1, 4)\),使得 \(F^{'}(\xi_{1}) = F^{'}(\xi_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2})\),使得 \(F^{''}(\xi) = f^{''}(\xi) + \frac{1}{3} = 0\),即 \(f^{''}(\xi) = -\frac{1}{3}\)。证毕。

\(f(x)\)\([0, 2]\) 上连续,在 \((0, 2)\) 内三阶可导,且 \(\lim\limits_{x \to 0^{+}}\frac{f(x)}{x} = 2\)\(f(1) = 1\)\(f(2) = 6\)。证明:\(\exists \xi \in (0, 2)\),使得 \(f^{'''}(\xi) = 9\)

分析:

\(\lim\limits_{x \to 0^{+}}\frac{f(x)}{x} = 2\),得到 \(f(0) = 0\)\(f^{'}_{+}(0) = 2\)

\(p(x) = ax^{3} + bx^{2} + cx + d\),有 \(p^{'}(x) = 3ax^{2} + 2bx + c\)

\[\begin{cases} p(0) = d = f(0) = 0 \\ p^{'}_{+}(0) = c = f^{'}_{+}(0) = 2 \\ p(1) = a + b + c + d = f(1) = 1 \\ p(2) = 8a + 4b + 2c + d = f(2) = 6 \\ \end{cases} \]

解得 \(p(x) = \frac{3}{2}x^{3} - \frac{5}{2}x^{2} + 2x\)

证明:

\(\lim\limits_{x \to 0^{+}}\frac{f(x)}{x} = 2\),得到 \(f(0) = 0\)\(f^{'}_{+}(0) = 2\)

\(F(x) = f(x) - \frac{3}{2}x^{3} + \frac{5}{2}x^{2} - 2x\),有 \(F(0) = F^{'}(0) = F(1) = F(2) = 0\)\(F^{'}(x) = f^{'}(x) - \frac{9}{2}x^{2} + 5x - 2\)\(F^{''}(x) = f^{''}(x) - 9x + 5\)\(F^{'''}(x) = f^{'''}(x) = 9\)

由罗尔中值定理,\(\exists x_{1} \in (0, 1), x_{2} \in (1, 2)\),使得 \(F^{'}(x_{1}) = F^{'}(x_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi_{1} \in (0, x_{1}), \xi_{2} \in (x_{1}, x_{2})\),使得 \(F^{''}(\xi_{1}) = F^{''}(\xi_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2})\),使得 \(F^{'''}(\xi) = f^{'''}(\xi) - 9 = 0\),即 \(f^{'''}(\xi) = 9\)。证毕。

(2019数二)设 \(f(x)\)\([0, 1]\) 二阶可导,\(f(0) = 0\)\(f(1) = 1\)\(\int_{0}^{1}{f(x)\text{d}x} = 1\)。证明:

  1. 存在 \(\xi \in (0, 1)\),使得 \(f^{'}(\xi) = 0\)
  2. 存在 \(\eta \in (0, 1)\),使得 \(f^{''}(\eta) < -2\)
  1. 证明:

    由积分中值定理,\(\exists \xi_{0} \in (0, 1)\),使得 \(f(\xi_{0}) = \frac{\int_{0}^{1}{f(x)\text{d}x}}{1 - 0} = 1\)

    因为 \(f(\xi_{0}) = f(1) = 1\),由罗尔中值定理,\(\exists \xi \in (\xi_{0}, 1) \subset (0, 1)\),使得 \(f^{'}(\xi) = 0\)。证毕。

  2. 分析:

    \(p(x) = ax^{2} + bx + c\)

    \[\begin{cases} p(0) = c = f(0) = 0 \\ p(1) = a + b + c = f(1) = 1 \\ \int_{0}^{1}{p(x)\text{d}x} = \frac{a}{3} + \frac{b}{2} + c = \int_{0}^{1}{f(x)\text{d}x} = 1 \\ \end{cases} \]

    解得 \(p(x) = -3x^{2} + 4x\)

    证明:

    \(F(x) = f(x) + 3x^{2} - 4x\),有 \(F(0) = F(1) = \int_{0}^{1}{F(x)\text{d}x} = 0\)\(F^{'}(x) = f^{'}(x) + 6x - 4\)\(F^{''}(x) = f^{''}(x) + 6\)

    由积分中值定理,\(\exists \eta_{0} \in (0, 1)\),使得 \(F(\eta_{0}) = \frac{\int_{0}^{1}{F(x)\text{d}x}}{1 - 0} = 0\)

    由罗尔中值定理,\(\exists \eta_{1} \in (0, \eta_{0}), \eta_{2} \in (\eta_{0}, 2)\),使得 \(F^{'}(\eta_{1}) = F^{'}(\eta_{2}) = 0\)

    再由罗尔中值定理,\(\exists \eta \in (\eta_{1}, \eta_{2}) \subset (0, 1)\),使得 \(F^{''}(\eta) = f^{''}(\eta) + 6 = 0\),即 \(f^{''}(\eta) = -6 < -2\)。证毕。

\(f(x)\)\([0, 1]\) 内二阶可导且最小值为 \(-1\)\(f(0) = f(1) = 0\)。证明:\(\exists \xi \in (0, 1)\),使得 \(f^{''}(\xi) \ge 8\)

证明:

\(p(x) = ax(x - 1)\),不妨设 \(a > 0\) 并令 \([p(x)]_{\min} = -1\),则 \([p(x)]_{\min} = p(\frac{1}{2}) = -1\),解得 \(a = 4\)

\(F(x) = f(x) - p(x) = f(x) - 4x^{2} + 4x\),有 \(F(0) = F(1) = 0\)\(F^{'}(x) = f^{'}(x) - 8x + 4\)\(F^{''}(x) = f^{''}(x) - 8\)

不妨设 \(f(x)\)\((0, 1)\) 的一个最小值点为 \(c\),即 \(f(c) = -1\)

  • \(c = \frac{1}{2}\) 时:\(F(\frac{1}{2}) = 0\)

  • \(c \neq \frac{1}{2}\) 时:\(F(\frac{1}{2}) = f(\frac{1}{2}) - p(\frac{1}{2}) > 0\)\(F(c) = f(c) - p(c) < 0\)

    由零点存在定理,存在 \(x_{0}\) 介于 \(c\)\(\frac{1}{2}\) 之间,使得 \(F(x_{0}) = 0\)

综上,\(\exists x_{0} \in (0, 1)\),使得 \(F(x_{0}) = 0\)

由罗尔中值定理,\(\exists \xi_{1} \in (0, x_{0}), \xi_{2} \in (x_{0}, 1)\),使得 \(F^{'}(\xi_{1}) = F^{'}(\xi_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2}) \subset (0, 1)\),使得 \(F^{''}(\xi) = f^{''}(\xi) - 8 = 0\),即 \(f^{''}(\xi) = 8\)。证毕。

\(f(x)\)\([-1, 1]\) 三阶连续可导,\(f(-1) = 0\)\(f^{'}(0) = 0\)\(f(1) = 1\)。证明:\(\exists \xi \in (-1, 1)\),使得 \(f^{'''}(\xi) = 3\)

分析:

有时候题目给定的函数值不足以求出 \(p(x)\) 的准确表达式,此时可能需要强行建立等量关系,带着未知量求解问题。

\(p(x) = ax^{3} + bx^{2} + cx + d\),有 \(p^{'}(x) = 3ax^{2} + 2bx + c\)

\[\begin{cases} p(-1) = -a + b - c + d = f(-1) = 0 \\ p^{'}(0) = c = f^{'}(0) = 0 \\ p(1) = a + b + c + d = f(1) = 1 \\ p(0) = d = f(0) \\ \end{cases} \]

解得 \(p(x) = \frac{1}{2}x^{3} + [\frac{1}{2} - f(0)]x^{2} + f(0)\)

证明:

\(F(x) = f(x) - \frac{1}{2}x^{3} + [f(0) - \frac{1}{2}]x^{2} - f(0)\),有 \(F(-1) = F(0) = F(1) = F^{'}(0) = 0\)\(F^{'}(x) = f^{'}(x) - \frac{3}{2}x^{2} + [1 - 2f(0)]x\)\(F^{''}(x) = f^{''}(x) - 3x + 1 - 2f(0)\)\(F^{'''}(x) = f^{'''}(x) - 3\)

由罗尔中值定理,\(\exists x_{1} \in (-1, 0), x_{2} \in (0, 1)\),使得 \(F^{'}(x_{1}) = F^{'}(x_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi_{1} \in (x_{1}, 0), \xi_{2} \in (0, x_{2})\),使得 \(F^{''}(\xi_{1}) = F^{''}(\xi_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2}) \subset (-1, 1)\),使得 \(F^{'''}(\xi) = f^{'''}(\xi) - 3 = 0\),即 \(f^{'''}(\xi) = 3\)。证毕。

\(f(x)\)\([0, 1]\) 具有连续导数,\(\int_{0}^{1}{f(x)\text{d}x} = \frac{5}{2}\)\(\int_{0}^{1}{xf(x)\text{d}x} = \frac{3}{2}\)。证明:\(\exists \xi \in (0, 1)\),使得 \(f^{'}(\xi) = 3\)

分析:

\(p(x) = ax + b\)

\[\begin{cases} \int_{0}^{1}{p(x)\text{d}x} = \frac{1}{2}a + b = \int_{0}^{1}{f(x)\text{d}x} = \frac{5}{2} \\ \int_{0}^{1}{xp(x)\text{d}x} = \frac{1}{3}a + \frac{1}{2}b = \int_{0}^{1}{xf(x)\text{d}x} = \frac{3}{2} \\ \end{cases} \]

解得 \(p(x) = 3x + 1\)

证明:

\(F(x) = f(x) - 3x - 1\),有 \(\int_{0}^{1}{F(x)\text{d}x} = \int_{0}^{1}{xF(x)\text{d}x} = 0\)\(F^{'}(x) = f^{'}(x) - 3\)

由积分中值定理,\(\exists x_{1} \in (0, 1)\),使得 \(F(x_{1}) = \frac{\int_{0}^{1}{F(x)\text{d}x}}{1 - 0} = 0\)\(\exists x_{2} \in (0, 1)\),使得 \(x_{2}F(x_{2}) = \frac{\int_{0}^{1}{xF(x)\text{d}x}}{1 - 0} = 0\),而 \(x_{2} \neq 0\),故 \(F(x_{2}) = 0\)

由罗尔中值定理,\(\exists \xi \in (x_{1}, x_{2})\),使得 \(F^{'}(\xi) = f^{'}(\xi) - 3 = 0\)\(f^{'}(\xi) = 3\)。证毕。

一类构造函数的技巧

技巧积累:

对于下面一种结构:

\[\colorbox{yellow}{$f^{'}(x) + f(x)g(x) = 0$} \]

可以设:

\[\colorbox{yellow}{$F(x) = f(x)e^{\int{g(x)\text{d}x}}$} \]

\(F(x)\) 求导就能出现相应的形式。

在实际操作中,我们只需构造出一个求导后能出现所需形式的函数即可,而不用考虑构造过程中的一系列问题(如定义域矛盾、分母为零等)。

下面是一些例题。

\(f(x)\)\([a, b]\) 连续,\((a, b)\) 可导,\(a > 0\)\(f(a) = 0\)。证明:\(\exists \xi \in (a, b)\),使得 \(f(\xi) = \frac{b - \xi}{a}f^{'}(\xi)\)

分析:

\(f(\xi) = \frac{b - \xi}{a}f^{'}(\xi) \iff f^{'}(\xi) + \frac{a}{\xi - b}f(\xi) = 0\)

\(F(x) = f(x)e^{\int{\frac{a}{x - b}\text{d}x}} = f(x)e^{a\ln(x - b)} = (x - b)^{a}f(x)\)

在该过程中,我们忽略不定积分的常数 \(C\),也忽略 \(\ln(x - b)\) 中定义域的矛盾,这些因素不影响最终找到 \(F(x)\),并且这个 \(F(x)\) 在形式上不再出现上述若干问题。

证明:

\(F(x) = (x - b)^{a}f(x)\),有 \(F(a) = F(b) = 0\)\(F^{'}(x) = a(x - b)^{a - 1}f(x) + (x - b)^{a}f^{'}(x)\)

由罗尔中值定理,\(\exists \xi \in (a, b)\),使得 \(F^{'}(\xi) = 0\),化简即得 \(f(\xi) = \frac{b - \xi}{a}f^{'}(\xi)\)。证毕。

\(f(x)\)\([a, b]\) 连续,\((a, b)\) 可导,\(f(a) = f(b) = 0\)。证明:\(\exists \xi \in (a, b)\),使得 \(2f(\xi) + \xi f^{'}(\xi) = 0\)

分析:

\(2f(\xi) + \xi f^{'}(\xi) = 0 \iff f^{'}(\xi) + \frac{2}{\xi}f(\xi) = 0 (\xi \neq 0)\)。尽管我们在构造 \(F(x) = f(x)e^{\int{\frac{2}{x}\text{d}x}}\) 不需要考虑分母为 \(0\) 的问题,但最后证得原式必须经过约分,这就不得不考虑 \(\xi\) 是否为 \(0\),并应以此作为标准进行分类讨论。

证明:

\(F(x) = x^{2}f(x)\),有 \(F(a) = F(b) = 0\)\(F^{'}(x) = 2xf(x) + x^{2}f^{'}(x)\)

  • \(ab \ge 0\):则 \(x = 0\) 不在区间 \((a, b)\) 内,

    由罗尔中值定理,\(\exists \xi \in (a, b)\),使得 \(F^{'}(\xi) = 2\xi f(\xi) + \xi^{2}f^{'}(\xi) = 0\),约分得 \(2f(\xi) + \xi f^{'}(\xi) = 0\)

  • \(ab < 0\):则 \(x = 0\) 在区间 \((a, b)\) 内,且 \(F(0) = 0\)

    由罗尔中值定理,\(\exists \xi \in (a, 0)\)(或 \(\exists \xi \in (0, b)\)),使得 \(F^{'}(\xi) = 2\xi f(\xi) + \xi^{2}f^{'}(\xi) = 0\),约分得 \(2f(\xi) + \xi f^{'}(\xi) = 0\)

综上,\(\exists \xi \in (a, b)\),使得 \(2f(\xi) + \xi f^{'}(\xi) = 0\)。证毕。

\(f(x)\)\([a, b]\) 连续,\((a, b)\) 可导,\(f(a) = f(b) = 0\)。证明:\(\exists \xi \in (a, b)\),使得 \(f^{'}(\xi) + f^{2}(\xi) = 0\)

分析:

根据技巧,令 \(F(x) = f(x)e^{\int{f(x)\text{d}x}}\)。我们希望将其化为一个特解,于是可以将不定积分改写为变限积分,而变限积分求导结果为原函数,也能满足需求。

证明:

\(F(x) = f(x)e^{\int_{a}^{x}{f(t)\text{d}t}}\),有 \(F(a) = F(b) = 0\)\(F^{'}(x) = f^{'}(x)e^{\int_{a}^{x}{f(t)\text{d}t}} + f^{2}(x)e^{\int_{a}^{x}{f(t)\text{d}t}}\)

由罗尔中值定理,\(\exists \xi \in (a, b)\),使得 \(F^{'}(\xi) = 0\),化简即得 \(f^{'}(\xi) + f^{2}(\xi) = 0\)。证毕。

在某些情况下,上述技巧并不完全适用,可能需要通过其它途径证明。比如就 \(f^{'}(\xi) + f^{2}(\xi) = 0\) 一式,可以转化为 \(\frac{f^{'}(\xi)}{f^{2}(\xi)} + 1 = 0\),不难发现这是 \([-\frac{1}{f(x)} + x]^{'} = 0\)(然而这要求 \(f(x)\) 在区间内不为 \(0\))。总之,具体问题具体分析。如下面这一道题。

\(f(x)\)\([0, 1]\) 连续,\((0, 1)\) 可导,\(f(0) = 1\)\(f(1) = \frac{1}{2}\)。证明:\(\exists \xi \in (0, 1)\),使得 \(f^{'}(\xi) + f^{2}(\xi) = 0\)

分析:若仿照上一题令 \(F(x) = f(x)e^{\int_{0}^{x}{f(t)\text{d}t}}\),则 \(F(0) = 1\)\(F(1) = \frac{1}{2}e^{\int_{0}^{1}{f(t)\text{d}t}}\),无法就这两个端点使用罗尔中值定理得出 \(F^{'}(\xi) = 0\)。若令 \(F(x) = -\frac{1}{f(x)} + x\),看似可以得证,但要求 \(f(x)\) 不为 \(0\)。故不妨分类讨论,两者各取所长。

证明:

  • \(f(x)\)\((0, 1)\) 上无零点:

    \(F(x) = -\frac{1}{f(x)} + x\),有 \(F(0) = F(1) = -1\)\(F^{'}(x) = \frac{f^{'}(x)}{f^{2}(x)} + 1\)

    由罗尔中值定理,\(\exists \xi \in (0, 1)\),使得 \(F^{'}(\xi) = \frac{f^{'}(\xi)}{f^{2}(\xi)} + 1 = 0\),即 \(f^{'}(\xi) + f^{2}(\xi) = 0\)

  • \(f(x)\)\((0, 1)\) 上有多个零点:

    记为 \(f(x_{1}) = f(x_{2}) = \dots = f(x_{n}) = 0\)

    \(F(x) = f(x)e^{\int_{0}^{x}{f(t)\text{d}t}}\),有 \(F(x_{1}) = F(x_{2}) = \dots = F(x_{n}) = 0\)\(F^{'}(x) = f^{'}(x)e^{\int_{0}^{x}{f(t)\text{d}t}} + f^{2}(x)e^{\int_{0}^{x}{f(t)\text{d}t}}\)

    由罗尔中值定理,\(\exists \xi \in (x_{1}, x_{2})\),使得 \(F^{'}(\xi) = 0\),化简即得 \(f^{'}(\xi) + f^{2}(\xi) = 0\)

  • \(f(x)\)\((0, 1)\) 上有且仅有一个零点 \(x_{0}\)

    \(x_{0}\) 一定是 \(f(x)\)\((0, 1)\) 上的最小值点。

    反证法:假设存在 \(\eta \in (0, 1)\) 使得 \(f(\eta) < 0\),则由零点存在定理,因为 \(f(0)f(\eta) < 0, f(\eta)f(1) < 0\),故 \((0, \eta), (\eta, 1)\) 上应各有一个零点,与条件不符。故 \(x_{0}\) 是最小值点。

    由费马定理:因为 \(x_{0}\)\(f(x)\) 的一个最小值点,故 \(f^{'}(x_{0}) = 0\)

    \(f(x_{0}) = 0\),所以 \(f^{'}(x_{0}) + f^{2}(x_{0}) = 0\)。取 \(\xi = x_{0} \in (0, 1)\)

综上,\(\exists \xi \in (0, 1)\),使得 \(f^{'}(\xi) + f^{2}(\xi) = 0\)。证毕。

双中值定理

通常指一类求证结论中含有两个甚至多个变量的题目。

若变量间有互不相等的限制,通常考虑分割区间,对不同区间使用中值定理;

否则,可以考虑分离变量,划分成一个个独立的结构以便于观察其背后蕴含的中值定理。

下面是一些例题。

\(f(x)\)\([0, \frac{\pi}{2}]\) 二阶可导,\(f^{'}(0) = 0\)。证明:\(\exists \xi, \eta, \omega \in (0, \frac{\pi}{2})\),使得 \(f^{'}(\xi) = \frac{\pi}{2} f^{''}(\omega) \eta \sin{2\xi}\)

证明:

由柯西中值定理,\(\exists \xi \in (0, \frac{\pi}{2})\),使得 \(\frac{f(\frac{\pi}{2}) - f(0)}{\cos{\pi} - \cos{0}} = \frac{f^{'}(\xi)}{-2\sin{2\xi}}\),即 \(\frac{f^{'}(\xi)}{\sin{2\xi}} = f(\frac{\pi}{2}) - f(0)\)

由拉氏定理,\(\exists \eta \in (0, \frac{\pi}{2})\),使得 \(f(\frac{\pi}{2}) - f(0) = \frac{\pi}{2}f^{'}(\eta) = \frac{\pi}{2}[f^{'}(\eta) - f^{'}(0)]\)

再由拉氏定理,\(\exists \omega \in (0, \frac{\pi}{2})\),使得 \(f^{'}(\eta) - f^{'}(0) = \eta f^{''}(\omega)\)

综上,\(\exists \xi, \eta, \omega \in (0, \frac{\pi}{2})\),使得 \(\frac{f^{'}(\xi)}{\sin{2\xi}} = f(\frac{\pi}{2}) - f(0) = \frac{\pi}{2}[f^{'}(\eta) - f^{'}(0)] = \frac{\pi}{2}\eta f^{''}(\omega)\),即 \(f^{'}(\xi) = \frac{\pi}{2} f^{''}(\omega) \eta \sin{2\xi}\),证毕。

\(f(x)\)\([0, 1]\) 可导,\(f(0) = 0\)\(f(1) = \frac{1}{4}\)。证明:\(\exists \xi, \eta \in (0, 1)\)\(\xi \neq \eta\),使得 \(f^{'}(\xi) + f^{'}(\eta) = \eta - \xi\)

分析:

注意到 \(\xi \neq \eta\),暗示本题使用分割区间证明双中值定理。

\(f^{'}(\xi) + f^{'}(\eta) = \eta - \xi \iff [f^{'}(\xi) + \xi] + [f^{'}(\eta) - \eta] = 0\)

\([f(x) + \frac{x^{2}}{2}]^{'} = f^{'}(x) + x\)\([f(x) - \frac{x^{2}}{2}]^{'} = f^{'}(x) - x\),设分割点为 \(c\)\(\xi \in (0, c), \eta \in (c, 1)\)

逆用拉氏定理有:\(\frac{[f(c) + \frac{c^{2}}{2}] - [f(0) + \frac{0^{2}}{2}]}{c - 0} + \frac{[f(1) - \frac{1^{2}}{2}] - [f(c) - \frac{c^{2}}{2}]}{1 - c} = 0\),整理得 \(\frac{f(c) + \frac{c^{2}}{2}}{c} + \frac{-f(c) + \frac{c^{2}}{2} - \frac{1}{4}}{1 - c} = 0\)。观察可取 \(c = \frac{1}{2}\)

证明:

\(g(x) = f(x) + \frac{x^{2}}{2}\)\(h(x) = f(x) - \frac{x^{2}}{2}\)

由拉氏定理,\(\exists \xi \in (0, \frac{1}{2})\),使得 \(f^{'}(\xi) + \xi = g^{'}(\xi) = \frac{g(\frac{1}{2}) - g(0)}{\frac{1}{2} - 0} = 2f(\frac{1}{2}) + \frac{1}{4}\)

\(\exists \eta \in (\frac{1}{2}, 1)\),使得 \(f^{'}(\eta) - \eta = h^{'}(\eta) = \frac{h(1) - h(\frac{1}{2})}{1 - \frac{1}{2}} = -2f(\frac{1}{2}) - \frac{1}{4}\)

所以 \(f^{'}(\xi) + \xi + f^{'}(\eta) - \eta = 0\),即 \(f^{'}(\xi) + f^{'}(\eta) = \eta - \xi\)。证毕。

\(f(x)\)\([0, 1]\) 连续,\(I = \int_{0}^{1}{f(x)\text{d}x} \neq 0\)。证明:\(\exists x_{1}, x_{2} \in (0, 1)\),且 \(x_{1} \neq x_{2}\),使得 \(\frac{1}{f(x_{1})} + \frac{1}{f(x_{2})} = \frac{2}{I}\)

证明:

\(c \in (0, 1)\)\(I_{1} = \int_{0}^{c}{f(x)\text{d}x} = (c - 0)f(x_{1})\)\(I_{2} = \int_{c}^{1}{f(x)\text{d}x} = (1 - c)f(x_{2})\),其中 \(x_{1} \in(0, c), x_{2} \in (c, 1)\)

\(\frac{1}{f(x_{1})} + \frac{1}{f(x_{2})} = \frac{c}{I_{1}} + \frac{1 - c}{I_{2}}\)。只需证明存在一个 \(c \in (0, 1)\),满足 \(I_{1} = I_{2} = \frac{I}{2}\)

\(F(x) = \int_{0}^{x}{f(t)\text{d}t}\),则 \(F(0) = 0\)\(F(1) = I \neq 0\)

\(\frac{I}{2} = \frac{F(0) + F(1)}{2}\),由介值定理知,\(\exists \xi \in [0, 1]\),使得 \(F(\xi) = \frac{I}{2}\)

\(\frac{I}{2} \neq I\)\(\frac{I}{2} \neq 0\),所以 \(\xi \in (0, 1)\)

所以存在 \(c = \xi \in (0, 1)\),使得 \(I_{1} = I_{2} = \frac{I}{2}\)。证毕。

\(f(x)\)\([0, 1]\) 连续,\(\int_{0}^{1}{f(x)\text{d}x} \neq 0\)。证明:存在互异的三个数 \(\xi_{1}, \xi_{2}, \xi_{3} \in [0, 1]\),满足 \(\frac{\pi}{8}\int_{0}^{1}{f(x)\text{d}x} = \left[ \frac{1}{1 + \xi_{1}^{2}}\int_{0}^{\xi_{1}}{f(x)\text{d}x} + f(\xi_{1})\arctan{\xi_{1}} \right]\xi_{3} - \left[ \frac{1}{1 + \xi_{2}^{2}}\int_{0}^{\xi_{2}}{f(x)\text{d}x} + f(\xi_{2})\arctan{\xi_{2}} \right](1 - \xi_{3})\)

分析:

注意到 “互异”,考虑分割区间。

\(F(x) = \arctan{x}\int_{0}^{x}{f(x)\text{d}x}\),则原式化为 \(\frac{1}{2}F(1) = F^{'}(\xi_{1})\xi_{3} - F^{'}(\xi_{2})(1 - \xi_{3})\)

观察到系数 \(\xi_{3}\)\(1 - \xi_{3}\),故不妨就以 \(\xi_{3}\) 作为分割点,中值 \(\xi_{1} \in (0, \xi_{3})\)\(\xi_{2} \in (\xi_{3} , 1)\)

逆用拉氏定理,\(F^{'}(\xi_{1}) = \frac{F(\xi_{3}) - F(0)}{\xi_{3}}\)\(F^{'}(\xi_{2}) = \frac{F(1) - F(\xi_{3})}{1 - \xi_{3}}\),回代得 \(\frac{1}{2}F(1) = F(\xi_{3}) - F(0) = F(\xi_{3}) - F(1)\)

继续化简,只需证明存在 \(\xi_{3}\) 满足 \(F(\xi_{3}) = \frac{1}{2}F(1)\)

证明:

\(F(x) = \arctan{x}\int_{0}^{x}{f(x)\text{d}x}\),有 \(F(0) = 0\)\(F(1) = \frac{\pi}{4}\int_{0}^{1}{f(x)\text{d}x}\)\(F^{'}(x) = \frac{1}{1 + x^{2}}\int_{0}^{1}{f(x)\text{d}x} + f(x)\arctan{x}\)

由介值定理,因为 \(F(1) \neq 0\)\(F(0) = 0\),所以 \(\frac{1}{2}F(1) \neq F(1)\)\(\frac{1}{2}F(1) \neq 0\),所以 \(\exists \xi_{3} \in (0, 1)\),使得 \(F(\xi_{3}) = \frac{1}{2}F(1)\)

由拉氏定理,\(\exists \xi_{1} \in (0, \xi_{3})\),使得 \(F^{'}(\xi_{1}) = \frac{F(\xi_{3}) - F(0)}{\xi_{3} - 0} = \frac{F(1)}{2\xi_{3}}\)\(\exists \xi_{2} \in (\xi_{3}, 1)\),使得 \(F^{'}(\xi_{2}) = \frac{F(1) - F(\xi_{3})}{1 - \xi_{3}} = \frac{F(1)}{2(1 - \xi_{3})}\)

所以 \(\frac{1}{2}F(1) = \xi_{3}F^{'}(\xi_{1}) = (1 - \xi_{3})F^{'}(\xi_{2})\),即为所求等式。证毕。

\(f(x), g(x)\)\([0, 1]\) 可导,\(\int_{0}^{1}{f(x)\text{d}x} = 3\int_{\frac{2}{3}}^{1}{f(x)\text{d}x}\)。证明:存在两个不同的点 \(\xi, \eta \in (0, 1)\),使得 \(f^{'}(\xi) = g^{'}(\xi)[f(\eta) - f(\xi)]\)

证明:

由题,\(\int_{0}^{\frac{2}{3}}{f(x)\text{d}x} = 2\int_{\frac{2}{3}}^{1}{f(x)\text{d}x}\)

由积分中值定理,\(\exists x_{1} \in (0, \frac{2}{3})\),使得 \(\int_{0}^{\frac{2}{3}}{f(x)\text{d}x} = \frac{2}{3}f(x_{1})\)\(\exists x_{2} \in (\frac{2}{3}, 1)\),使得 \(\int_{\frac{2}{3}}^{1}{f(x)\text{d}x} = (1 - \frac{2}{3})f(x_{2}) = \frac{1}{3}f(x_{2})\)

所以 \(\int_{0}^{\frac{2}{3}}{f(x)\text{d}x} = 2\int_{\frac{2}{3}}^{1}{f(x)\text{d}x} \iff \frac{2}{3}f(x_{1}) = 2 \times \frac{1}{3}f(x_{2}) \iff f(x_{1}) = f(x_{2})\)

\(F(x) = [f(x) - f(x_{1})]e^{g(x)}\),有 \(F(x_{1}) = F(x_{2}) = 0\)\(F^{'}(x) = f^{'}(x)e^{g(x)} + [f(x) - f(x_{1})]g^{'}(x)e^{g(x)}\)

由罗尔中值定理,\(\exists \xi \in (x_{1}, x_{2})\),使得 \(F^{'}(\xi) = f^{'}(\xi)e^{g(\xi)} + [f(\xi) - f(x_{1})]g^{'}(\xi)e^{g(\xi)} = 0\)

所以 \(f^{'}(\xi) + g^{'}(\xi)[f(\xi) - f(x_{1})] = 0\),可取 \(\eta = x_{1} \in (0, 1)\),证毕。

\(f(x)\)\([a, b]\) 可导,\(f^{'}(x) \neq 0\)\(f(a) = 0\)\(f(b) = 2\)。证明:\(\exists \xi, \eta \in (a, b)\)\(\xi \neq \eta\),使得 \(f^{'}(\eta)[f(\xi) + \xi f^{'}(\xi)] = f^{'}(\xi)[bf^{'}(\eta) - 1]\)

分析:

\(f^{'}(\eta)[f(\xi) + \xi f^{'}(\xi)] = f^{'}(\xi)[bf^{'}(\eta) - 1] \iff \frac{f(\xi) + \xi f^{'}(\xi)}{f^{'}(\xi)} = b - \frac{1}{f^{'}(\eta)}\)

\(\xi \in (a, c), \eta \in (c, b)\)。对 \(\xi, \eta\) 分别用柯西中值定理和拉氏定理:\(\frac{cf(c) - af(a)}{f(c) - f(a)} = b - \frac{b - c}{f(b) - f(c)}\),整理得 \(f(c) = 1\)

由介值定理,显然存在这样一个分界点 \(c\)

证明:

由介值定理,\(\exists c \in (a, b)\),使得 \(f(c) = 1\)

由柯西中值定理,\(\exists \xi \in (a, c)\),使得 \(\frac{f(\xi) + \xi f^{'}(\xi)}{f^{'}(\xi)} = \frac{cf(c) - af(a)}{f(c) - f(a)} = c\)

由拉氏定理,\(\exists \eta \in (c, b)\),使得 \(f^{'}(\eta) = \frac{f(b) - f(c)}{b - c} = \frac{1}{b - c}\)

所以 \(\frac{1}{f^{'}(\eta)} + \frac{f(\xi) + \xi f^{'}(\xi)}{f^{'}(\xi)} = b \iff \frac{f(\xi) + \xi f^{'}(\xi)}{f^{'}(\xi)} = \frac{bf^{'}(\eta) - 1}{f^{'}(\eta)} \iff f^{'}(\eta)[f(\xi) + \xi f^{'}(\xi)] = f^{'}(\xi)[bf^{'}(\eta) - 1]\)。证毕。

更多习题

\(f(x)\)\([a, b]\) 连续,\((a, b)\) 可导,证明:\(\exists \xi \in (a, b)\),使得 \(2\xi[f(b) - f(a)] = (b^{2} - a^{2})f^{'}(\xi)\)

典型错解:由拉氏定理,存在 \(\xi \in (a, b)\),使得 \(\frac{f(b) - f(a)}{b^{2} - a^{2}} = \frac{f^{'}(\xi)}{2\xi}\)。(\(\xi\) 可能为 \(0\)

正解:令 \(F(x) = [f(b) - f(a)](x^{2} - a^{2}) - (b^{2} - a^{2})[f(x) - f(a)]\),有 \(F(a) = F(b) = 0\)

由罗尔中值定理,\(\exists \xi \in (a, b)\),使得 \(F^{'}(\xi) = 2\xi[f(b) - f(a)] - (b^{2} - a^{2})f^{'}(\xi) = 0\)。证毕。

\(f(x)\)\([a, b]\) 可导,在 \((a, b)\) 存在极值点。证明:\(\exists \xi \in (a, b)\),使得 \(f^{'}(\xi) - f(\xi) + f(a) = 0\)

证明:

\(F(x) = e^{-x}[f(x) - f(a)]\),有 \(F(a) = 0\)\(F^{'}(x) = e^{-x}[f^{'}(x) - f(x) + f(a)]\)

\(f(x)\)\((a, b)\) 内的一个极值点为 \(x = c\),则 \(f^{'}(c) = 0\)\(F^{'}(c) = e^{-x}[f(a) - f(c)] = -F(c)\)

  • \(F(c) = 0\) 时:\(F^{'}(c) = 0\),取 \(\xi = c \in (a, b)\)\(F^{'}(\xi) = 0\)

  • \(F(c) > 0\) 时:\(F^{'}(c) < 0\)\(F(x)\)\(x = c\) 处 “左高右低”,又 \(F(a) = 0 < F(c)\)

    \(F(x)\)\([a, c]\) 上的最大值一定在开区间 \((a, c)\) 内取到,由费马引理,\(\exists \xi \in (a, c)\) 使得 \(F^{'}(\xi) = 0\)

  • \(F(c) < 0\) 时:\(F^{'}(c) > 0\)\(F(x)\)\(x = c\) 处 “左低右高”,又 \(F(a) = 0 > F(c)\)

    \(F(x)\)\([a, c]\) 上的最小值一定在开区间 \((a, c)\) 内取到,由费马引理,\(\exists \xi \in (a, c)\) 使得 \(F^{'}(\xi) = 0\)

综上,\(\exists \xi \in (a, b)\) 使得 \(F^{'}(\xi) = e^{-\xi}[f^{'}(\xi) - f(\xi) + f(a)] = 0\),即 \(f^{'}(\xi) - f(\xi) + f(a) = 0\)。证毕。

奇函数 \(f(x)\)\([-1, 1]\) 二阶可导。证明:\(\exists \xi \in (-1, 1)\),使得 \(f^{''}(\xi) - f^{'}(\xi) + f(1) = 0\)

证明:

\(F(x) = e^{-x}[f^{'}(x) - f(1)]\),有 \(F^{'}(x) = e^{-x}[f^{''}(x) - f^{'}(x) + f(1)]\)

由拉氏定理,\(\exists \xi_{1} \in (-1, 0)\),使得 \(f^{'}(\xi_{1}) = f(0) - f(-1) = f(1)\)\(\exists\xi_{2} \in (0, 1)\),使得 \(f^{'}(\xi_{2}) = f(1) - f(0) = f(1)\)

所以 \(\exists \xi_{1} \in (-1, 0), \xi_{2} \in (0, 1)\),使得 \(f^{'}(\xi_{1}) = f^{'}(\xi_{2}) = f(1)\),即 \(F(\xi_{1}) = F(\xi_{2}) = 0\)

由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2})\),使得 \(F^{'}(\xi) = 0\),整理得 \(f^{''}(\xi) - f^{'}(\xi) + f(1) = 0\)。证毕。

\(f(x)\)\([a, b]\) 连续,\((a, b)\) 可导,且存在 \(c \in (a, b)\),满足 \(f^{'}(c) = 0\)。证明:\(\exists \xi \in (a, b)\),使得 \(f^{'}(\xi) = \frac{f(\xi) - a}{b - a}\)

证明:

\(F(x) = [f(x) - f(a)]e^{-\frac{x}{b - a}}\),有 \(F(a) = 0\)\(F^{'}(x) = f^{'}(x)e^{-\frac{x}{b - a}} - \frac{1}{b - a}[f(x) - f(a)]e^{-\frac{x}{b - a}}\)

\(F^{'}(c) = -\frac{1}{b - a}[f(c) - f(a)]e^{-\frac{x}{b - a}} = -\frac{1}{b - a}F(c)\)

  • \(F(c) = 0\) 时:\(F^{'}(c) = 0\),取 \(\xi = c \in (a, b)\)\(F^{'}(\xi) = 0\)

  • \(F(c) > 0\) 时:\(F^{'}(c) < 0\)\(F(x)\)\(x = c\) 处 “左高右低”,又 \(F(a) = 0 < F(c)\)

    \(F(x)\)\([a, c]\) 上的最大值一定在开区间 \((a, c)\) 内取到,由费马引理,\(\exists \xi \in (a, c)\) 使得 \(F^{'}(\xi) = 0\)

  • \(F(c) < 0\) 时:\(F^{'}(c) > 0\)\(F(x)\)\(x = c\) 处 “左低右高”,又 \(F(a) = 0 > F(c)\)

    \(F(x)\)\([a, c]\) 上的最小值一定在开区间 \((a, c)\) 内取到,由费马引理,\(\exists \xi \in (a, c)\) 使得 \(F^{'}(\xi) = 0\)

综上,\(\exists \xi \in (a, b)\) 使得 \(F^{'}(\xi) = e^{-\frac{\xi}{b - a}}[f^{'}(\xi) - \frac{f(\xi) - f(a)}{b - a}] = 0\),即 \(f^{'}(\xi) = \frac{f(\xi) - f(a)}{b - a}\)。证毕。

\(f(x)\)\([0, 3]\) 二阶可导,\(2f(0) = \int_{0}^{2}{f(x)\text{d}x} = f(2) + f(3)\)。证明:\(\exists \xi \in (0, 3)\),使得 \(f^{''}(\xi) - 2f^{'}(\xi) = 0\)

证明:

\(F(x) = f^{'}(x)e^{-2x}\),有 \(F^{'}(x) = f^{''}(x)e^{-2x} - 2f^{'}(x)e^{-2x}\)

由积分中值定理,\(\exists x_{1} \in (0, 2)\),使得 \(\int_{0}^{2}{f(x)\text{d}x} = 2f(x_{1})\)

由介值定理,\(\exists x_{2} \in (2, 3)\),使得 \(f(2) + f(3) = 2f(x_{2})\)

\(2f(0) = 2f(x_{1}) = 2f(x_{2}) \iff f(0) = f(x_{1}) = f(x_{2})\)

由罗尔中值定理,\(\exists \xi_{1} \in (0, x_{1}), \xi_{2} \in (x_{1}, x_{2})\),使得 \(f^{'}(\xi_{1}) = f^{'}(\xi_{2}) = 0 \iff F(\xi_{1}) = F(\xi_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2})\),使得 \(F^{'}(\xi) = 0\),整理得 \(f^{''}(\xi) - 2f^{'}(\xi) = 0\)。证毕。

\(f(x)\)\([a, b]\) 可导,\(f(a) = f(b) = 0\)\(f^{'}_{+}(a)f^{'}_{-}(b) < 0\)。证明:\(\exists \xi \in (a, b)\),使得 \(f^{''}(\xi) = f(\xi)\)

分析:

\(f^{''}(\xi) = f(\xi) \iff f^{''}(\xi) + f^{'}(\xi) = f^{'}(\xi) + f(\xi) \iff [f^{''}(\xi) + f^{'}(\xi)] - [f^{'}(\xi) + f(\xi)] = 0\)

证明:

\(F(x) = e^{-x}[f^{'}(x) + f(x)]\),有 \(F^{'}(x) = e^{-x}[f^{''}(x) - f(x)]\)

再令 \(G(x) = e^{x}f(x)\),有 \(G^{'}(x) = e^{x}[f^{'}(x) + f(x)] = e^{2x}F(x)\)

因为 \(f(a) = f(b) = 0\)\(f^{'}_{+}(a)f^{'}_{-}(b) < 0\),所以 \(\exists x_{0} \in (a, b)\) 使得 \(f(x_{0}) = 0\),所以 \(G(a) = G(x_{0}) = G(b) = 0\)

由罗尔中值定理,\(\exists \xi_{1} \in (a,x _{0}), \xi_{2} \in (x_{0}, b)\),使得 \(G^{'}(\xi_{1}) = G^{'}(\xi_{2}) = 0\),即 \(F(\xi_{1}) = F(\xi_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2})\),使得 \(F^{'}(\xi) = 0\),整理得 \(f^{''}(\xi) - f(\xi) = 0\)。证毕。

\(f(x)\)\([0, 2\pi]\) 二阶可导,\(f^{''}(x) \neq f(x)\)。证明:\(\exists \xi \in (0, 2\pi)\),使得 \(\tan{\xi} = \frac{2f^{'}(\xi)}{f(\xi) - f^{''}(\xi)}\)

分析:

\(\cos{\xi} \neq 0\) 时:

\[\begin{align} \tan{\xi} = \frac{2f^{'}(\xi)}{f(\xi) - f^{''}(\xi)} &\iff [f(\xi) - f^{''}(\xi)]\sin{\xi} - 2f^{'}(\xi)\cos{\xi} = 0 \\ & \iff [f(\xi)\sin{\xi} - f^{'}(\xi)\cos{\xi}] - [f^{''}(\xi)\sin{\xi} + f^{'}(\xi)\cos{\xi}] = 0 \\ &\iff -[f(x)\cos{x}]^{'}\Big{|}_{x = \xi} - [f^{'}(x)\sin{x}]^{'}\Big{|}_{x = \xi} = 0 \\ &\iff [f(x)\cos{x} + f^{'}(x)\sin{x}]^{'}\Big{|}_{x = \xi} = 0 \\ &\iff [f(x)\sin{x}]^{''}\Big{|}_{x = \xi} = 0 \\ \end{align} \]

构造函数 \(F(x) = f(x)\sin{x}\),步步为营即可。

还要注意证明 \(\cos{\xi} \neq 0\),因为 \(\tan{\xi}\) 是出现在结论中而没有出现在条件中,我们有必要说明 \(\tan{\xi}\) 的存在性。

证明:

\(F(x) = f(x)\sin{x}\),有 \(F(0) = F(\pi) = F(2\pi) = 0\)\(F^{'}(x) = f(x)\cos{x} + f^{'}(x)\sin{x}\)\(F^{''}(x) = [f(x) - f^{''}(x)]\sin{x} - 2f^{'}(x)\cos{x}\)

由罗尔中值定理,\(\exists \xi_{1} \in (0, \pi), \xi_{2} \in (\pi, 2\pi)\),使得 \(F^{'}(\xi_{1}) = F^{'}(\xi_{2}) = 0\)

再由罗尔中值定理,\(\exists \xi \in (\xi_{1}, \xi_{2})\),使得 \(F^{'}(\xi) = [f(\xi) - f^{''}(\xi)]\sin{\xi} - 2f^{'}(\xi)\cos{\xi} = 0\)

\(\xi = \frac{\pi}{2}\),则 \([f(\frac{\pi}{2}) - f^{''}(\frac{\pi}{2})] \times 1 - 2f^{'}(\frac{\pi}{2}) \times 0 = 0\),化简得 \(f(\frac{\pi}{2}) = f^{''}(\frac{\pi}{2})\),与题意矛盾。

\(\xi = \frac{3\pi}{2}\),则 \([f(\frac{3\pi}{2}) - f^{''}(\frac{3\pi}{2})] \times (-1) - 2f^{'}(\frac{3\pi}{2}) \times 0 = 0\),化简得 \(f(\frac{3\pi}{2}) = f^{''}(\frac{3\pi}{2})\),与题意矛盾。

\(\cos{\xi} \neq 0\)。又因为 \(f^{''}(\xi) \neq f(\xi)\),所以 \(\tan{\xi} = \frac{2f^{'}(\xi)}{f(\xi) - f^{''}(\xi)}\)。证毕。

(2020数一/数三)\(f(x)\)\([0, 2]\) 有连续的导函数,\(f(0) = f(2) = 0\)。记 \(M = \max\limits_{0 < x < 2}|f(x)|\)。证明:

  1. \(\exists \xi \in (0, 2)\),使得 \(|f^{'}(\xi)| \ge M\)
  2. 若对 \(\forall x \in (0, 2)\),均有 \(|f^{'}(x)| \le M\),则 \(M = 0\)
posted @ 2025-07-17 20:16  Schucking_Sattin  阅读(45)  评论(0)    收藏  举报