高等数学预习-不定积分

高等数学预习-不定积分

参考资料

http://staff.ustc.edu.cn/~rui/ppt/math-analysis/chap4_2.html#content

https://space.bilibili.com/1035929235

https://space.bilibili.com/42428180


基本定义与性质

若函数 \(F(x)\) 的导函数 \(F^{'}(x) = f(x)\),对于一切 \(x \in (a, b)\) 都成立,则称 \(F(x)\)\(f(x)\)\((a, b)\) 上的一个原函数。

对于一个给定函数 \(y = f(x)\),其原函数的一般表达式称为 \(f(x)\) 的不定积分,并记作

\[\int{f(x)\text{d}x} \\ \]

这里的函数 \(f(x)\) 称作被积函数。

\(F(x)\)\(f(x)\) 的一个原函数,则 \(F(x) + C\)\(C\) 为任意常数)便是 \(f(x)\) 的原函数的一般表达式,即

\[\int{f(x)\text{d}x} = F(x) + C \\ \]

  • 线性性:\(\int{[kf(x) + lg(x)]\text{d}x} = k\int{f(x)\text{d}x} + l\int{g(x)\text{d}x}\)

积分表

  • \(\int{k\text{d}x} = kx + C\)
  • \(\int{x^{a}\text{d}x} = \frac{x^{a + 1}}{a + 1} + C\)
  • \(\int{\frac{1}{x}\text{d}x} = \ln|x| + C\)
  • \(\int{a^{x}\text{d}x} = \frac{a^{x}}{\ln{a}} + C\)
  • \(\int{\cos{x}\text{d}x} = \sin{x} + C\)
  • \(\int{\sin{x}\text{d}x} = -\cos{x} + C\)
  • \(\int{\sec^{2}{x}\text{d}x} = \tan{x} + C\)
  • \(\int{\csc^{2}{x}\text{d}x} = -\cot{x} + C\)
  • \(\int{\frac{1}{1 + x^{2}}\text{d}x} = \arctan{x} + C\)
  • \(\int{\frac{1}{\sqrt{1 - x^{2}}}\text{d}x} = \arcsin{x} + C\)
  • \(\int{\tan{x}\text{d}x} = -\ln|\cos{x}| + C\)
  • \(\int{\cot{x}\text{d}x} = \ln|\sin{x}| + C\)
  • \(\int{\sec{x}\tan{x}\text{d}x} = \sec{x} + C\)
  • \(\int{\csc{x}\cot{x}\text{d}x} = -\csc{x} + C\)
  • \(\int{\sec{x}\text{d}x} = \ln|\sec{x} + \tan{x}| + C\)
  • \(\int{\csc{x}\text{d}x} = \ln|\csc{x} - \cot{x}| + C\)
  • \(\int{\frac{1}{a^{2} + x^{2}}\text{d}x} = \frac{1}{a}\arctan{\frac{x}{a}} + C(a > 0)\)
  • \(\int{\frac{1}{a^{2} - x^{2}}\text{d}x} = \frac{1}{2a}\ln\left| \frac{a + x}{a - x} \right| + C(a > 0)\)
  • \(\int{\frac{1}{\sqrt{a^{2} - x^{2}}}\text{d}x} = \arcsin{\frac{x}{a}} + C(a > 0)\)
  • \(\int{\frac{1}{\sqrt{x^{2} + a^{2}}}\text{d}x} = \ln(x + \sqrt{x^{2} + a^{2}}) + C(a > 0)\)
  • \(\int{\frac{1}{\sqrt{x^{2} - a^{2}}}\text{d}x} = \ln|x + \sqrt{x^{2} - a^{2}}| + C(a > 0)\)

下面是一些应用实例。

\(\int{\frac{xe^{x}}{(x + 1)^{2}}\text{d}x}\)

\(I = \int{\text{d}\left( \frac{e^{x}}{x + 1} \right)} = \frac{e^{x}}{x + 1} + C\)

\(\int{\left( e^{x} + \frac{3x^{2}}{1 + x^{2}} \right)\text{d}x}\)

\(I = \int{e^{x}\text{d}x} + 3\int{\left( 1 - \frac{1}{1 + x^{2}} \right)\text{d}x} = e^{x} + 3x - 3\arctan{x} + C\)


第一换元法

\(f(x)\) 原函数为 \(F(x)\),则

\[\int{f(\varphi(x))\text{d}\varphi(x)} = F(\varphi(x)) + C \\ \]

下面是一些例题。

\(\int{e^{e^{x} + x}\text{d}x}\)

\(I = \int{e^{e^{x}}\text{d}e^{x}} = \int{e^{e^{x}}} + C\)​。

\(\int{\frac{1}{\sqrt{x}(1 + x)}\text{d}x}\)

\(I = \int{\frac{2\text{d}\sqrt{x}}{1 + x}} = 2\arctan{\sqrt{x}} + C\)

\(\int{\tan{x}\text{d}x}\)

\(I = \int{\frac{\sin{x}}{\cos{x}}\text{d}x} = \int{\frac{-\text{d}\cos{x}}{\cos{x}}} = -\ln|\cos{x}| + C\)

\(\int{\frac{1}{\sqrt{a^{2} - x^{2}}}\text{d}x}(a > 0)\)

\(I = \int{\frac{1}{\sqrt{a^{2}\left(1 - \left( \frac{x}{a} \right)^{2}\right)}}\text{d}x} = \int{\frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^{2}}}\text{d}\frac{x}{a}} = \arcsin{\frac{x}{a}} + C\)

\(\int{\frac{1}{a^{2} + x^{2}}\text{d}x}(a > 0)\)

\(I = \int{\frac{1}{a^{2}\left( 1 + \left( \frac{x}{a} \right)^{2} \right)}\text{d}x} = \frac{1}{a}\int{\frac{1}{1 + \left( \frac{x}{a} \right)^{2}}\text{d}\frac{x}{a}} = \frac{1}{a}\arctan{x} + C\)​。

\(\int{x^{2}\sqrt{x^{3} + 1}\text{d}x}\)

\(I = \frac{1}{3}\int{\sqrt{x^{3} + 1} \times 3x^{2}\text{d}x} = \frac{1}{3}\int{\sqrt{x^{3} + 1}\text{d}(x^{3} + 1)} = \frac{1}{3}\times \frac{1}{\frac{1}{2} + 1}\left( x^{3} + 1 \right)^{\frac{1}{2} + 1} + C = \frac{2}{9}\left( x^{3} + 1 \right)^{\frac{3}{2}} + C\)

\(\int{\frac{1}{a^{2} - x^{2}}\text{d}x}(a > 0)\)

\(I = \frac{1}{2a}\int{\frac{(a + x) + (a - x)}{(a + x)(a - x)}\text{d}x} = \frac{1}{2a}\left( \int{\frac{1}{a + x}\text{d}x} + \int{\frac{1}{a - x}\text{d}x} \right) = \frac{1}{2a}\left( \int{\frac{1}{a + x}\text{d}(a + x)} - \int{\frac{1}{a - x}\text{d}(a - x)} \right) = \frac{1}{2a}\ln|\frac{a + x}{a - x}| + C\)


第二换元法

\(x = \varphi(t)\),此时 \(\text{d}x = \varphi^{'}(t)\text{d}t\),则

\[\int{f(x)\text{d}x} = \int{f(\varphi(t))\varphi^{'}(t)\text{d}t} \\ \]

此时若 \(f(\varphi(t))\varphi^{'}(t)\) 原函数已知,比如是 \(F(t)\),则

\[\int{f(x)\text{d}x} = F(t) + C = F(\varphi^{-1}(x)) + C \\ \]

其中 \(\varphi^{-1}\)\(\varphi\) 的反函数。

第二换元法之三角换元:

  • 被积函数含 \(\sqrt{a^{2} - x^{2}}(a > 0)\),令 \(x = a\sin{t}, t \in [-\frac{\pi}{2}, \frac{\pi}{2}]\),则 \(\sqrt{a^{2} - x^{2}} = a\cos{t}\)
  • 被积函数含 \(\sqrt{x^{2} + a^{2}}(a > 0)\),令 \(x = a\tan{t}, t \in (-\frac{\pi}{2}, \frac{\pi}{2})\),则 \(\sqrt{x^{2} + a^{2}} = a\sec{t}\)
  • 被积函数含 \(\sqrt{x^{2} - a^{2}}(a > 0)\),令 \(x = a\sec{t}, t \in [0, \frac{\pi}{2})\cup(\frac{\pi}{2}, \pi]\),则 \(\sqrt{x^{2} - a^{2}} = a|\tan{t}|\)

下面是一些例题。

\(\int{\frac{1}{1 + \sqrt{x}}\text{d}x}\)

\(t = \sqrt{x}\)\(x = t^{2}\)

\(I = \int{\frac{1}{1 + t}\text{d}t^{2}} = \int{\frac{2t}{1 + t}\text{d}t} = 2\int{\left( 1 - \frac{1}{1 + t} \right) \text{d}t} = 2\left( \int{\text{d}t} - \int{\frac{1}{1 + t}\text{d}(1 + t)} \right) = 2t - 2\ln|1 + t| + C = 2\sqrt{x} - 2\ln(1 + \sqrt{x}) + C\)

\(\int{\sqrt{a^{2} - x^{2}}\text{d}x}\)

\(x = a\sin{t}, t \in [-\frac{\pi}{2}, \frac{\pi}{2}]\)\(t = \arcsin{\frac{x}{a}}\)

\(I = \int{a\cos{t}\text{d}(a\sin{t})} = a^{2}\int{\cos^{2}{t}\text{d}t} = \frac{a^{2}}{2}\int{(1 + \cos{2t})\text{d}t} = \frac{a^{2}}{2}\left( \int{\text{d}t} + \frac{1}{2}\int{\cos{2t}\text{d}(2t)} \right) = \frac{a^{2}}{2}(t + \frac{1}{2}\sin{2t}) + C\)

其中 \(\sin{2t} = 2\sin{t}\cos{t}\),而 \(\sin{t} = \frac{x}{a}, \cos{t} = \sqrt{1 - \sin^{2}{t}} = \frac{\sqrt{a^{2} - x^{2}}}{a}\),所以 \(\sin{2t} = \frac{2x\sqrt{a^{2} - x^{2}}}{a^{2}}\)

回代,得 \(I = \frac{a^{2}}{2}\arcsin{\frac{x}{a}} + \frac{1}{2}x\sqrt{a^{2} - x^{2}} + C\)

\(\int{\frac{1}{(x^{2} + 1)^{\frac{3}{2}}}\text{d}x}\)

\(x = \tan{t}, t \in (-\frac{\pi}{2}, \frac{\pi}{2})\)\(t = \arctan{x}\)

\(I = \int{\frac{1}{\sec^{3}{t}}\text{d}(\tan{t})} = \int{\frac{1}{\sec{t}}\text{d}t} = \int{\cos{t}\text{d}t} = \sin{t} + C = \frac{x}{\sqrt{x^{2} + 1}} + C\)

\(\int{\frac{1}{x\sqrt{4 - x^{2}}}\text{d}x}\)

\(x = 2\sin{t}, t \in [-\frac{\pi}{2}, \frac{\pi}{2}]\)\(t = \arcsin{\frac{x}{2}}\)

\(I = \int{\frac{1}{4\sin{t}\cos{t}}\text{d}(2\sin{t})} = \frac{1}{2}\int{\frac{1}{\sin{t}}\text{d}t} = \frac{1}{2}\int{\csc{t}\text{d}t} = \frac{1}{2}\ln|\csc{t} - \cot{t}| + C\)

\(\sin{t} = \frac{x}{2}\),所以 \(\csc{t} = \frac{1}{\sin{t}} = \frac{2}{x}\)\(\cos{t} = \sqrt{1 - \sin^{2}{t}} = \frac{\sqrt{4 - x^{2}}}{2}\)\(\cot{t} = \frac{\cos{t}}{\sin{t}} = \frac{\sqrt{4 - x^{2}}}{x}\)

回代,得 \(I = \frac{1}{2}\ln|\frac{2 - \sqrt{4 - x^{2}}}{x}| + C\)

\(\int{\frac{\sqrt{x^{2} - 9}}{x}\text{d}x}\)

\(x \ge 3\) 时:令 \(x = 3\sec{t}, t \in [0, \frac{\pi}{2})\)\(t = \arccos{\frac{3}{x}}\),则 \(\sqrt{x^{2} - 9} = 3\tan{t}\),(限定 \(t \in [0, \frac{\pi}{2})\),确定 \(\tan{t}\) 正负性)

\(I = \int{\frac{3\tan{t}}{3\sec{t}}\text{d}(3\sec{t})} = 3\int{\frac{\tan{t}}{\sec{t}} \times \tan{t}\sec{t}\text{d}t} = 3\int\tan^{2}{t}\text{d}t = 3\int{(\sec^{2}{t} - 1)\text{d}t} = 3\tan{t} - 3t + C\)

\(\sec{t} = \frac{x}{3} \iff \cos{t} = \frac{3}{x}\),所以 \(\sin{t} = \sqrt{1 - \cos^{2}{t}} = \frac{\sqrt{x^{2} - 9}}{x}\)\(\tan{t} = \frac{\sin{t}}{\cos{t}} = \frac{\sqrt{x^{2} - 9}}{3}\)

回代,得 \(I = \sqrt{x^{2} - 9} - 3\arccos{\frac{3}{x}} + C\)

\(x \le -3\) 时:\(I = -\int{\frac{\sqrt{(-x)^{2} - 9}}{-x}\text{d}x} = \sqrt{(-x)^{2} - 9} - 3\arccos{\frac{3}{-x}} + C = \sqrt{x^{2} - 9} - 3\arccos{\frac{3}{-x}} + C\)

综上,\(I = \sqrt{x^{2} - 9} - 3\arccos{\frac{3}{|x|}} + C\)


分部积分法

设函数 \(u(x), v(x)\) 均有连续的导数,则

\[\int{u(x)v^{'}(x)\text{d}x} = u(x)v(x) - \int{u^{'}(x)v(x)\text{d}x} \\ \]

下面是一些例题。

\(\int{x^{2}\ln{x}\text{d}x}\)

\(I = \frac{1}{3}x^{3}\ln{x} - \int{\frac{\frac{1}{3}x^{3}}{x}\text{d}x} = \frac{1}{3}x^{3}\ln{x} - \frac{1}{3}\int{x^{2}\text{d}x} = \frac{1}{3}x^{3}\ln{x} - \frac{1}{9}x^{3} + C\)

\(\int{x^{2}e^{x}\text{d}x}\)

\(I = \int{x^{2}\text{d}e^{x}} = x^{2}e^{x} - \int{e^{x}\text{d}x^{2}} = x^{2}e^{x} - 2\int{xe^{x}\text{d}x}\)

其中 \(\int{xe^{x}\text{d}x} = \int{x\text{d}e^{x}} = xe^{x} - \int{e^{x}\text{d}x} = xe^{x} - e^{x} + C\)

\(I = (x^{2} - 2x + 2)e^{x} + C^{'}\)

\(\int{\arctan{x}\text{d}x}\)

\(I = x\arctan{x} - \int{x\text{d}(\arctan{x})} = x\arctan{x} - \int{\frac{x}{1 + x^{2}}\text{d}x} = x\arctan{x} - \frac{1}{2}\int{\frac{1}{1 + x^{2}}\text{d}(1 + x^{2})} = x\arctan{x} - \frac{\ln(1 + x^{2})}{2} + C\)

\(\int{\sqrt{a^{2} - x^{2}}\text{d}x}\)

\(I = x\sqrt{a^{2} - x^{2}} - \int{x\text{d}\sqrt{a^{2} - x^{2}}} = x\sqrt{a^{2} - x^{2}} + \int{\frac{x^{2}}{\sqrt{a^{2} - x^{2}}}\text{d}x} = x\sqrt{a^{2} - x^{2}} - \int{\frac{a^{2} - x^{2}}{\sqrt{a^{2} - x^{2}}}\text{d}x} + \int{\frac{a^{2}}{\sqrt{a^{2} - x^{2}}}\text{d}x}\)

注意到 \(\int{\frac{a^{2} - x^{2}}{\sqrt{a^{2} - x^{2}}}\text{d}x}\) 即为 \(I\),所以 \(I = \frac{1}{2}x\sqrt{a^{2} - x^{2}} + \frac{1}{2}\int{\frac{a^{2}}{\sqrt{a^{2} - x^{2}}}\text{d}x} = \frac{1}{2}x\sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2}\arcsin{\frac{x}{a}} + C\)

本题也可以用三角换元做。

\(\int{e^{ax}\cos{bx}\text{d}x}\),其中 \(a > 0, b > 0\)

\[\begin{align} I &= \frac{1}{a}\int{\cos{bx}\text{d}e^{ax}} \\ &= \frac{1}{a}\left( e^{ax}\cos{bx} - \int{e^{ax}\text{d}(\cos{bx})} \right) \\ &= \frac{1}{a}\left( e^{ax}\cos{bx} + b\int{e^{ax}\sin{bx}\text{d}x} \right) \\ \end{align} \]

\(J = \int{e^{ax}\sin{bx}\text{d}x}\)

\[\begin{align} J &= \frac{1}{a}\int{\sin{bx}\text{d}e^{ax}} \\ &= \frac{1}{a}\left( e^{ax}\sin{bx} - \int{e^{ax}\text{d}(\sin{bx})} \right) \\ &= \frac{1}{a}\left( e^{ax}\sin{bx} - b\int{e^{ax}\cos{bx}\text{d}x} \right) \\ \end{align} \]

于是有:

\[\begin{align} I &= \frac{1}{a}(e^{ax}\cos{bx} + bJ) \\ J &= \frac{1}{a}(e^{ax}\sin{bx} - bI) \\ \end{align} \]

联立解得 \(I = \frac{e^{ax}}{a^{2} + b^{2}}(a\cos{bx} + b\sin{bx}) + C_{1}\)\(J = \frac{e^{ax}}{a^{2} + b^{2}}(a\sin{bx} - b\cos{bx}) + C_{2}\)

总结:

  • 通过多次分部积分建立以积分整体为未知量的方程。该方法叫做 组合积分法

\(I_n = \int{\frac{1}{(x^{2} + a^{2})^{n}}\text{d}x}\),其中 \(a > 0, n > 0, n \in Z\)

\[\begin{align} I_{n} &= \frac{x}{(x^{2} + a^{2})^{n}} - \int{x\text{d}\left( \frac{1}{(x^{2} + a^{2})^{n}} \right)} \\ &= \frac{x}{(x^{2} + a^{2})^{n}} + 2n\int{\frac{x^{2}}{(x^{2} + a^{2})^{n + 1}}\text{d}x} \\ &= \frac{x}{(x^{2} + a^{2})^{n}} + 2n\int{\frac{x^{2} + a^{2}}{(x^{2} + a^{2})^{n + 1}}\text{d}x} - 2n\int{\frac{a^{2}}{(x^{2} + a^{2})^{n + 1}}\text{d}x} \\ &= \frac{x}{(x^{2} + a^{2})^{n}} + 2nI_{n} - 2na^{2}I_{n + 1} \\ \end{align} \]

由此可得到递推公式:

\[\begin{align} \colorbox{yellow}{$I_{n + 1} = \frac{2n - 1}{2na^{2}}I_{n} + \frac{x}{2na^{2}(x^{2} + a^{2})^{n}}$} \end{align} \]

\(I_{1} = \int{\frac{1}{x^{2} + a^{2}}\text{d}x} = \frac{1}{a}\arctan{\frac{x}{a}} + C\),由此可求得 \(I_{n}\)

总结:

  • 通过分部积分建立递推式。

有理式的不定积分

所谓 \(x\) 的有理函数是指两个多项式之比,即

\[R(x) = \frac{P(x)}{Q(x)} = \frac{a_{n}x^{n} + \cdots + a_{0}}{b_{m}x^{m} + \cdots + b_{0}} \\ \]

其中 \(n, m\) 为非负整数,\(a_{0}, \cdots, a_{n}\)\(b_{0}, \cdots, b_{m}\) 为常数,且 \(a_{n} \neq 0, b_{m} \neq 0\)

\(m > n\),则称 \(R(x)\) 为真分式,否则为假分式。

根据多项式除法,假分式总能化成一个多项式与一个真分式之和。多项式积分是容易的,故只需研究真分式积分。

在实数范围内,任何实系数多项式 \(Q(x) = b_{m}x^{m} + \cdots + b_{0}(b_{m} \neq 0)\) 可以进行如下分解:

\[\begin{align} Q(x) = b_{m}(x - \alpha_{1})^{r_{1}}\dots(x - \alpha_{k})^{r_{k}}(x^{2} + p_{1}x + q_{1})^{s_{1}}\cdots(x^{2} + p_{l}x + q_{l})^{s_{l}} \end{align} \]

其中 \(r_{1} + \cdots + r_{k} + 2(s_{1} + \cdots + s_{l}) = m\),且所有 \(\alpha_{i}(i = 1, \cdots, k)\) 均为实数,所有 \(p_{j},q_{j}(j = 1, \cdots, l)\) 均为实数,且 \(b_{j}^{2} - 4q_{j} < 0(j = 1, \cdots, l)\)(即 \(x^{2} + p_{j}x + q_{j}\) 无法再分解为 \((x - \beta)(x - \gamma)\) 的形式)。

而对于有理真分式 \(\frac{P(x)}{Q(x)}\),总可以进行如下分解:

\[\frac{P(x)}{Q(x)} = \sum\limits_{i = 1}^{k}\sum\limits_{R = 1}^{r_{i}}\frac{A_{i, R}}{(x - \alpha_{i})^{R}} + \sum\limits_{j = 1}^{l}\sum\limits_{S = 1}^{s_{j}}\frac{B_{j, S}x + D_{j, S}}{(x^{2} + p_{i}x + q_{i})^{S}} \]

(以上结论的证明在此处不研究)

于是只需考察 \(\int{\frac{1}{(x - \alpha)^{R}}}\text{d}x\)\(\int{\frac{Bx + D}{(x^{2} + px + q)^{S}}\text{d}x}\) 的计算。

对于前者:

\[\begin{align} \int{\frac{1}{(x - \alpha)^{R}}\text{d}x} = \begin{cases} \ln|x - \alpha| + C, & R = 1 \\ \frac{1}{1 - R}(x - \alpha)^{1 - R} + C, & R > 1 \\ \end{cases} \end{align} \]

对于后者,令 \(t = x + \frac{p}{2}\)\(a^{2} = q - \frac{p^{2}}{4}\)\(I_{S} = \int{\frac{1}{(t^{2} + a^{2})^{S}}\text{d}t}\)

\[\begin{align} \int{\frac{Bx + D}{(x^{2} + px + q)^{S}}\text{d}x} &= \int{\frac{Bx + D}{\left( \left(x + \frac{p}{2}\right)^{2} + \left(q - \frac{p^{2}}{4}\right) \right)^{S}}\text{d}x} \\ &= \int{\frac{B\left(t - \frac{p}{2}\right) + D}{\left( t^{2} + a^{2} \right)^{S}}\text{d}\left(t - \frac{p}{2}\right)} \\ &= \int{\frac{Bt + D - \frac{Bp}{2}}{(t^{2} + a^{2})^{S}}\text{d}t} \\ &= \frac{B}{2}\int{\frac{2t}{(t^{2} + a^{2})^{S}}\text{d}t} + \left(D - \frac{Bp}{2}\right)\int{\frac{1}{(t^{2} + a^{2})^{S}}\text{d}t} \\ &= \frac{B}{2}\int{\frac{1}{(t^{2} + a^{2})^{S}}\text{d}(t^{2} + a^{2})} + \left(D - \frac{Bp}{2}\right)I_{S} \end{align} \]

其中

\[\begin{align} \int{\frac{1}{(t^{2} + a^{2})^{S}}\text{d}(t^{2} + a^{2})} = \begin{cases} \ln|t^{2} + a^{2}| + C, & S = 1 \\ \frac{1}{1 - S}(t^{2} + a^{2})^{1 - S} + C, & S > 1 \\ \end{cases} \end{align} \]

\(I_{S}\) 可以利用分部积分法建立递推公式求得。

于是有理函数的不定积分可以被完全表示。


下面是一些例题。

\(\int{\frac{x - 3}{(x - 1)(x^{2} - 1)}\text{d}x}\)

\(I = \int{\frac{x - 3}{(x - 1)^{2}(x + 1)}\text{d}x}\)

\(\frac{x - 3}{(x - 1)^{2}(x + 1)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^{2}} + \frac{D}{x + 1}\)。记该式为 \((*)\)

法一:通分分子展开后比对分子各项系数建立方程组求解

\(\frac{A}{x - 1} + \frac{B}{(x - 1)^{2}} + \frac{D}{x + 1} = \frac{A(x - 1)(x + 1) + B(x + 1) + D(x - 1)^{2}}{(x - 1)^{2}(x + 1)} = \frac{(A + D)x^{2} + (B - 2D)x + (-A + B + D)}{(x - 1)^{2}(x + 1)}\)

对应系数得

\[\begin{cases} A + D = 0 \\ B - 2D = 1 \\ -A + B + D = -3 \\ \end{cases} \]

解得 \(A = 1, B = -1,D = -1\),所以

\(I = \int{\left( \frac{1}{x - 1} - \frac{1}{(x - 1)^{2}} - \frac{1}{x + 1} \right)\text{d}x} = \ln|x - 1| + \frac{1}{x - 1} - \ln|x + 1| + C = \ln\left|\frac{x - 1}{x + 1}\right| + \frac{1}{x - 1} + C\)

法二:留数法+极限法

\((*) \times (x + 1)\)\(\frac{x - 3}{(x - 1)^{2}} = \left( \frac{A}{x - 1} + \frac{B}{(x - 1)^{2}} \right)(x + 1) + D\)。令 \(x = -1\),得 \(D = -1\)

\((*) \times (x - 1)^{2}\)\(\frac{x - 3}{x + 1} = (x - 1)A + B + \frac{(x - 1)^{2}}{x + 1}D\)。令 \(x = 1\),得 \(B = -1\)

\((*) \times x\) 后考察 \(x \to \infty\) 的极限:\(\lim\limits_{x \to \infty}\frac{x(x - 3)}{(x - 1)^{2}(x + 1)} = \lim\limits_{x \to \infty}\left( \frac{Ax}{x - 1} + \frac{Bx}{(x - 1)^{2}} + \frac{Dx}{x + 1} \right)\),即 \(0 = A + D\),解得 \(A = 1\)

下同法一,\(I = \ln\left|\frac{x - 1}{x + 1}\right| + \frac{1}{x - 1} + C\)

\(\int{\frac{x^{5} + x^{4} - 8}{x^{3} - x}\text{d}x}\)

\(I = \int{\left(x^{2} + x + 1 + \frac{x^{2} + x - 8}{x(x + 1)(x - 1)} \right)\text{d}x}\)

\(\frac{x^{2} + x - 8}{x(x + 1)(x - 1)} = \frac{A}{x} + \frac{B}{x + 1} + \frac{D}{x - 1}\)。记该式为 \((*)\)

\((*) \times x\)\(\frac{x^{2} + x - 8}{(x + 1)(x - 1)} = A + \frac{Bx}{x + 1} + \frac{Dx}{x - 1}\)。令 \(x = 0\),得 \(A = 8\)

\((*) \times (x + 1)\)\(\frac{x^{2} + x - 8}{x(x - 1)} = \frac{A(x + 1)}{x} + B + \frac{D(x + 1)}{x - 1}\)。令 \(x = -1\),得 \(B = -4\)

\((*) \times (x - 1)\)\(\frac{x^{2} + x - 8}{x(x + 1)} = \frac{A(x - 1)}{x} + \frac{B(x - 1)}{x + 1} + D\)。令 \(x = 1\),得 \(D = -3\)

\(I = \int{\left( x^{2} + x + 1 + \frac{8}{x} - \frac{4}{x + 1} - \frac{3}{x - 1} \right)\text{d}x} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + x + 8\ln|x| - 4\ln|x + 1| - 3\ln|x - 1| + C\)

\(\int{\frac{3}{x^{3} + 1}\text{d}x}\)

\(I = \int{\frac{3}{(x + 1)(x^{2} - x + 1)}\text{d}x}\)

\(\frac{3}{(x + 1)(x^{2} - x + 1)} = \frac{A}{x + 1} + \frac{Bx + D}{x^{2} - x + 1}\)。记该式为 \((*)\)

\((*) \times (x + 1)\)\(\frac{3}{x^{2} - x + 1} = A + \frac{(x + 1)(Bx + D)}{x^{2} - x + 1}\)。令 \(x = -1\),得 \(A = 1\)

\((*)\) 式中令 \(x = 0\),得 \(D = 2\)

\((*) \times x\) 后考察 \(x \to \infty\) 的极限:\(\lim\limits_{x \to \infty}\frac{3x}{(x + 1)(x^{2} - x + 1)} = \lim\limits_{x \to \infty}\left( \frac{Ax}{x + 1} + \frac{Bx^{2} + Dx}{x^{2} - x + 1} \right)\),即 \(0 = A + B\),解得 \(B = -1\)。故

\[\begin{align} I &= \int{\left( \frac{1}{x + 1} - \frac{x - 2}{x^{2} - x + 1} \right)\text{d}x} \\ &= \ln|x + 1| - \int{\frac{x - \frac{1}{2} - \frac{3}{2}}{x^{2} - x + 1}\text{d}x} \\ &= \ln|x + 1| - \frac{1}{2}\int{\frac{2x - 1}{x^{2} - x + 1}\text{d}x} + \frac{3}{2}\int{\frac{1}{x^{2} - x + 1}\text{d}x} \\ &= \ln|x + 1| - \frac{1}{2}\int{\frac{\text{d}(x^{2} - x + 1)}{x^{2} - x + 1}} + \frac{3}{2}\int{\frac{1}{\left( x - \frac{1}{2} \right)^{2} + \left( \frac{\sqrt{3}}{2} \right)^{2}}\text{d}\left( x - \frac{1}{2} \right)} \\ &= \ln|x + 1| - \frac{1}{2}\ln(x^{2} - x + 1) + \frac{3}{2}\times \frac{2}{\sqrt{3}}\arctan{\frac{2\left( x - \frac{1}{2} \right)}{\sqrt{3}}} + C \\ &= \ln|x + 1| - \frac{1}{2}\ln(x^{2} - x + 1) + \sqrt{3}\arctan{\frac{2x - 1}{\sqrt{3}}} + C \\ \end{align} \]

\(\int{\frac{3x + 6}{(x - 1)^{2}(x^{2} + x + 1)}\text{d}x}\)

\(\frac{3x + 6}{(x - 1)^{2}(x^{2} + x + 1)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^{2}} + \frac{Dx + E}{x^{2} + x + 1}\)。记该式为 \((*)\)

\((*) \times (x - 1)^{2}\)\(\frac{3x + 6}{x^{2} + x + 1} = A(x - 1) + B + \frac{(Dx + E)(x - 1)^{2}}{x^{2} + x + 1}\)。令 \(x = 1\),得 \(B = 3\)

\((*) \times (x - 1)\) 后考察 \(x \to 1\) 的极限:\(A = \lim\limits_{x \to 1}\left( \frac{3x + 6}{(x - 1)(x^{2} + x + 1)} - \frac{B}{x - 1} - \frac{(Dx + E)(x - 1)}{x^{2} + x + 1} \right) = \lim\limits_{x \to 1}\frac{3x + 6 - 3(x^{2} + x + 1)}{(x - 1)(x^{2} + x + 1)} = \lim\limits_{x \to 1}\frac{3(1 + x)(1 - x)}{(x - 1)(x^{2} + x + 1)} = \lim\limits_{x \to 1}\frac{-3(x + 1)}{x^{2} + x + 1} = -2\)

\((*)\) 式中令 \(x = 0\)\(6 = -A + B + E\),解得 \(E = 1\)

\((*) \times x\) 后考察 \(x \to \infty\) 的极限:\(\lim\limits_{x \to \infty}{\frac{(3x + 6)x}{(x - 1)^{2}(x^{2} + x + 1)}} = \lim\limits_{x \to \infty}{\left( \frac{Ax}{x - 1} + \frac{Bx}{(x - 1)^{2}} + \frac{Dx^{2} + Ex}{x^{2} + x + 1} \right)}\),即 \(0 = A + D\),解得 \(D = 2\)

\[\begin{align} I &= \int{\left( \frac{-2}{x - 1} + \frac{3}{(x - 1)^{2}} + \frac{2x + 1}{x^{2} + x + 1} \right)\text{d}x} \\ &= -2\ln|x - 1| - \frac{3}{x - 1} + \int{\frac{\text{d}(x^{2} + x + 1)}{x^{2} + x + 1}} \\ &= -2\ln|x - 1| - \frac{3}{x - 1} + \ln(x^{2} + x + 1) + C \\ \end{align} \]


三角函数有理式的不定积分

一般来说,若 \(R(u, v)\)\(u\)\(v\) 以及常数经过有限次四则运算所构成的有理式,则称 \(R(\sin{x}, \cos{x})\) 是一个三角函数有理式。

例如,\(\frac{\cos^{2}{x} + \sin^{5}{x}}{2\sin{x}}\) 是三角函数有理式,\(\sqrt{1 + \sin^{2}{x}}\) 不是三角函数有理式。

求解该类积分的通常方法是通过换元法转化为普通的有理函数不定积分。

下面是一些例题。

\(\int{\cos^{3}{x}\text{d}x}\)

\(I = \int{\cos{x}(1 - \sin^{2}{x})\text{d}x} = \int{(1 - \sin^{2}{x})\text{d}(\sin{x})} = \sin{x} - \frac{1}{3}\sin^{3}{x} + C\)​。

\(\int{\frac{\ln{\tan{x}}}{\sin{x}\cos{x}}\text{d}x}\)

\(I = \int{\frac{\ln{\tan{x}}}{\tan{x}}\text{d}(\tan{x})} = \int{\ln{\tan{x}}\text{d}(\ln{\tan{x}})} = \frac{1}{2}\left( \ln{\tan{x}} \right)^{2} + C\)

\(\int{\frac{1}{3 + \sin^{2}{x}}\text{d}x}\)

\(I = \int{\frac{\sin^{2} + \cos^{2}{x}}{4\sin^{2}{x} + 3\cos^{2}{x}}\text{d}x} = \int{\frac{\tan^{2}{x} + 1}{4\tan^{2}{x} + 3}\text{d}x} = \int{\frac{\sec^{2}{x}}{4\tan^{2}{x} + 3}\text{d}x} = \int{\frac{\text{d}(\tan{x})}{4\tan^{2}{x} + 3}} = \frac{1}{4}\int{\frac{\text{d}(\tan{x})}{\tan^{2}{x} + \left( \frac{\sqrt{3}}{2} \right)^{2}}} = \frac{\sqrt{3}}{6}\arctan{\frac{2\tan{x}}{\sqrt{3}}} + C\)​。

\(\int{\frac{\text{d}x}{\sin^{2}{x} - 4\cos^{2}{x}}}\)

\(I = \int{\frac{\sin^{2}{x} + \cos^{2}{x}}{\sin^{2}{x} - 4\cos^{2}{x}}\text{d}x} = \int{\frac{\tan^{2}{x} + 1}{\tan^{2}{x} - 4}\text{d}x} = \int{\frac{\text{d}(\tan{x})}{\tan^{2}{x} - 4}} = -\frac{1}{4}\ln\left| \frac{2 + \tan{x}}{2 - \tan{x}} \right| + C\)

\(\int{\tan^{3}{x}\sec{x}\text{d}x}\)

\(I = \int{(\sec^{2}{x} - 1)\tan{x}\sec{x}\text{d}x} = \int{(\sec^{2}{x} - 1)\text{d}(\sec{x})} = \frac{1}{3}\sec^{3}{x} - \sec{x} + C\)​。

\(\int{\frac{\text{d}x}{2 + \sin{x}\cos{x}}}\)

\[\begin{align} I &= \int{\frac{\sin^{2}{x} + \cos^{2}{x}}{2\sin^{2}{x} + \sin{x}\cos{x} + \cos^{2}{x}}\text{d}x} \\ &= \int{\frac{\tan^{2}{x} + 1}{2\tan^{2}{x} + \tan{x} + 2}\text{d}x} \\ &= \int{\frac{1}{2\tan^{2}{x} + \tan{x} + 2}\text{d}(\tan{x})} \\ &= \frac{1}{2}\int{\frac{1}{\left( \tan{x} + \frac{1}{4} \right)^{2} + \frac{15}{16}}\text{d}\left( \tan{x} + \frac{1}{4} \right)} \\ &= \frac{2}{\sqrt{15}}\arctan{\left( \frac{4\tan{x} + 1}{\sqrt{15}} \right)} + C \\ \end{align} \]

\(\int{\frac{\text{d}x}{\sin(x + a)\sin(x + b)}}\),其中 \(\sin(a - b) \neq 0\)

\[\begin{align} I &= \frac{1}{\sin(a - b)}\int{\frac{\sin[(x + a) - (x + b)]}{\sin(x + a)\sin(x + b)}\text{d}x} \\ &= \frac{1}{\sin(a - b)}\int{\frac{\sin(x + a)\cos(x + b) - \sin(x + b)\cos(x + a)}{\sin(x + a)\sin(x + b)}\text{d}x} \\ &= \frac{1}{\sin(a - b)}\int{\left( \frac{\cos(x + b)}{\sin(x + b)} - \frac{\cos(x + a)}{\sin(x + a)} \right)\text{d}x} \\ &= \frac{1}{\sin(a - b)}\left( \int{\frac{\text{d}{\sin(x + b)}}{\sin(x + b)}} - \int{\frac{\text{d}(\sin(x + a))}{\sin(x + a)}} \right) \\ &= \frac{1}{\sin(a - b)}\ln\left| \frac{\sin(x + b)}{\sin(x + a)} \right| + C \\ \end{align} \]

\(\int{\tan^{4}{x}\text{d}x}\)

\[\begin{align} I &= \int{(\sec^{2}{x} - 1)\tan^{2}{x}\text{d}x} \\ &= \int{\sec^{2}{x}\tan^{2}{x}\text{d}{x}} - \int{\tan^{2}{x}\text{d}x} \\ &= \int{\tan^{2}{x}\text{d}(\tan{x})} - \int{(\sec^{2}{x} - 1)\text{d}x} \\ &= \int{(\tan^{2}{x} - 1)\text{d}(\tan{x})} + \int{\text{d}x} \\ &= \frac{1}{3}\tan^{3}{x} - \tan{x} + x + C \end{align} \]

\(I_{n} = \int{\tan^{n}{x}\text{d}x}\),其中 \(n \ge 1, n \in Z\)

\[\begin{align} I_{n} &= \int{\tan^{n - 2}{x}(\sec^{2}{x} - 1)\text{d}x} \\ &= \int{\tan^{n - 2}{x}\text{d}(\tan{x})} - \int{\tan^{n - 2}{x}\text{d}x} \\ &= \frac{1}{n - 1}\tan^{n - 1}{x} - I_{n - 2} \\ \end{align} \]

\(I_{1} = \int{\tan{x}\text{d}x} = -\ln|\cos{x}| + C\)\(I_{2} = \int{(\sec^{2}{x} - 1)\text{d}x} = \int{\text{d}(\tan{x})} - \int{\text{d}x} = \tan{x} - x + C\)。故

\[\begin{align} I_{n} = \begin{cases} -\ln|\cos{x}| + C, & n = 1 \\ \sum\limits_{i = 1}^{\frac{n - 1}{2}}\frac{(-1)^{i - 1}}{n - 2i + 1}\tan^{n - 2i + 1}{x} + (-1)^{\frac{n + 1}{2}}\ln|\cos{x}| + C , & n = 2k + 1, k \in N^{+} \\ \sum\limits_{i = 1}^{\frac{n}{2}}\frac{(-1)^{i - 1}}{n - 2i + 1}\tan^{n - 2i + 1}{x} + (-1)^{\frac{n}{2}}x + C, & n = 2k, k \in N^{+} \\ \end{cases} \end{align} \]

\(I_{n} = \int{\sec^{n}{x}\text{d}x}\),其中 \(n \ge 1, n \in Z\)

\(n = 2k + 2\) 时:

\[\begin{align} I_{2k + 2} &= \int{\sec^{2k}{x}\text{d}(\tan{x})} \\ &= \int{(1 + \tan^{2}{x})^{k}\text{d}(\tan{x})} \\ &= \int{\sum\limits_{i = 0}^{k}\binom{k}{i}(\tan{x})^{2i}\text{d}(\tan{x})} \\ &= \sum\limits_{i = 0}^{k}\frac{1}{2i + 1}\binom{k}{i}(\tan{x})^{2i + 1} + C \\ \end{align} \]

此时 \(I_{n} = \sum\limits_{i = 0}^{\frac{n}{2} - 1}\frac{1}{2i + 1}\binom{\frac{n}{2} - 1}{i}(\tan{x})^{2i + 1} + C\)

\(n = 2k + 1\) 时:

\[\begin{align} I_{2k + 1} &= \int{\sec^{2k - 1}{x}\text{d}(\tan{x})} \\ &= \sec^{2k - 1}{x}\tan{x} - \int{\tan{x}\text{d}(\sec^{2k - 1}{x})} \\ &= \sec^{2k - 1}{x}\tan{x} - \int{\tan{x} \times (2k - 1)\sec^{2k - 2}{x} \times \sec{x}\tan{x}\text{d}x} \\ &= \sec^{2k - 1}{x}\tan{x} - (2k - 1)\int{\sec^{2k - 1}x\tan^{2}{x}\text{d}x} \\ &= \sec^{2k - 1}{x}\tan{x} - (2k - 1)\int{\sec^{2k - 3}{x}(\sec^{2}{x} - 1)\text{d}(\tan{x})} \\ &= \sec^{2k - 1}{x}\tan{x} - (2k - 1)(I_{2k + 1} - I_{2k - 1}) \\ \end{align} \]

整理得

\[\begin{align} I_{2k + 1} = \frac{1}{2k}\sec^{2k - 1}\tan{x} + \frac{2k - 1}{2k}I_{2k - 1} \\ \end{align} \]

to be done:该式能否求通项?


万能替换:对求解 \(\int{R(\sin{x}, \cos{x})\text{d}x}\) 一类问题,令 \(t = \tan{\frac{x}{2}}\),则有 \(\sin{x} = 2\sin{\frac{x}{2}}\cos{\frac{x}{2}} = \frac{2\tan{\frac{x}{2}}}{\tan^{2}{\frac{x}{2}} + 1} = \frac{2t}{t^{2} + 1}\)\(\cos{x} = \cos^{2}{\frac{x}{2}} - \sin^{2}{\frac{x}{2}} = \frac{1 - \tan^{2}{\frac{x}{2}}}{1 + \tan^{2}{\frac{x}{2}}} = \frac{1 - t^{2}}{1 + t^{2}}\),则原积分转化为 \(\int{R(\frac{2t}{1 + t^{2}}, \frac{1 - t^{2}}{1 + t^{2}})\text{d}\left( 2\arctan{t} \right)} = \int{R(\frac{2t}{1 + t^{2}}, \frac{1 - t^{2}}{1 + t^{2}})\times \frac{2}{1 + t^{2}}\text{d}t}\)

万能替换是求解三角函数有理式不定积分的最后通法,在使用万能替换之前要仔细分析有无更简便的换元方法。

下面是一些例题。

\(\int{\frac{\text{d}x}{2 + \sin{x}\cos{x}}}\)

\(I = \int{\frac{\text{d}x}{2 + \frac{1}{2}\sin{2x}}}\)。令 \(t = \tan{x}\),则 \(\sin{2x} = \frac{2t}{1 + t^{2}}\)\(\text{d}x = \frac{\text{d}t}{1 + t^{2}}\),故 \(I = \int{\frac{\frac{1}{1 + t^{2}}\text{d}t}{2 + \frac{t}{1 + t^{2}}}} = \int{\frac{\text{d}t}{2t^{2} + t + 2}}\)

下略,\(I = \frac{2}{\sqrt{15}}\arctan{\left( \frac{4\tan{x} + 1}{\sqrt{15}} \right)} + C\)

\(\int{\frac{\cot{x}\text{d}x}{\sin{x} + \cos{x} - 1}}\)

\(t = \tan{\frac{x}{2}}\),则 \(\text{d}x = \frac{2}{1 + t^{2}}\text{d}t\)\(\sin{x} = \frac{2t}{1 + t^{2}}\)\(\cos{x} = \frac{1 - t^{2}}{1 + t^{2}}\)\(\cot{x} = \frac{1 - t^{2}}{2t}\),所以

\[\begin{align} I &= \int{\frac{\frac{1 - t^{2}}{2t} \times \frac{2}{1 + t^{2}}\text{d}t}{\frac{2t}{1 + t^{2}} + \frac{1 - t^{2}}{1 + t^{2}} - 1}} \\ &= \int{\frac{\frac{1 - t^{2}}{t}\text{d}t}{2t + (1 - t^{2}) - (1 + t^{2})}} \\ &= \int{\frac{1 - t^{2}}{t(2t - 2t^{2})}\text{d}t} \\ &= \int{\frac{1 + t}{2t^{2}}\text{d}t} \\ &= \frac{1}{2}\int{\frac{\text{d}t}{t^{2}}} + \frac{1}{2}\int{\frac{\text{d}t}{t}} \\ &= -\frac{1}{2t} + \frac{1}{2}\ln|t| + C \\ &= -\frac{1}{2}\cot{\frac{x}{2}} + \frac{1}{2}\ln\left| \tan{\frac{x}{2}} \right| + C \\ \end{align} \]


组合积分法

该方法在前面的例题中已经出现过,核心思想是:当单独研究积分 \(I\) 不方便时,研究两个积分整体 \(I\)\(J\) 之间的关系从而求解 \(I, J\)

下面是一些例题。

\(\int{\frac{\sin{x}}{\sin{x} + \cos{x}}\text{d}x}\)

\(I = \int{\frac{\sin{x}}{\sin{x} + \cos{x}}\text{d}x}\)\(J = \int{\frac{\cos{x}}{\sin{x} + \cos{x}}\text{d}x}\)

\(I + J = \int{\text{d}x} = x + C\)

\(I - J = \int{\frac{\sin{x} - \cos{x}}{\sin{x} + \cos{x}}\text{d}x} = -\int{\frac{\text{d}(\sin{x} + \cos{x})}{\sin{x} + \cos{x}}} = -\ln|\sin{x} + \cos{x}| + C^{'}\)

解得 \(I = \frac{1}{2}x - \frac{1}{2}\ln|\sin{x} + \cos{x}| + C_{1}\)\(J = \frac{1}{2}x + \frac{1}{2}\ln|\sin{x} + \cos{x}| + C_{2}\)

\(\int{\frac{\sin^{2}{x}}{\sin{x} + \cos{x}}\text{d}x}\)

\(I = \int{\frac{\sin^{2}{x}}{\sin{x} + \cos{x}}\text{d}x}\)\(J = \int{\frac{\cos^{2}{x}}{\sin{x} + \cos{x}}\text{d}x}\)

\(I + J = \int{\frac{\text{d}x}{\sin{x} + \cos{x}}} = \int{\frac{\text{d}(x + \frac{\pi}{4})}{\sqrt{2}\sin(x + \frac{\pi}{4})}} = \frac{\sqrt{2}}{2}\ln|\csc(x + \frac{\pi}{4}) - \cot(x + \frac{\pi}{4})| + C\)

\(I - J = \int{\frac{\sin^{2}{x} - \cos^{2}{x}}{\sin{x} + \cos{x}}\text{d}x} = \int{(\sin{x} - \cos{x})\text{d}x} = -\sin{x} - \cos{x} + C^{'}\)

解得 \(I = \frac{\sqrt{2}}{4}\ln|\csc(x + \frac{\pi}{4}) - \cot(x + \frac{\pi}{4})| - \frac{\sqrt{2}\sin(x + \frac{\pi}{4})}{2} + C_{1}\)\(J = \frac{\sqrt{2}}{4}\ln|\csc(x + \frac{\pi}{4}) - \cot(x + \frac{\pi}{4})| + \frac{\sqrt{2}\sin(x + \frac{\pi}{4})}{2} + C_{2}\)

\(\int{\frac{\sin^{3}{x}}{\sin{x} + \cos{x}}\text{d}x}\)

\(I = \int{\frac{\sin^{3}{x}}{\sin{x} + \cos{x}}\text{d}x}\)\(J = \int{\frac{\cos^{3}{x}}{\sin{x} + \cos{x}}\text{d}x}\)

\(I + J = \int{(\sin^{2}{x} - \sin{x}\cos{x} + \cos^{2}{x})\text{d}x} = \int{(1 - \frac{1}{2}\sin{2x})\text{d}x} = x - \frac{1}{4}\int{\sin{2x}\text{d}(2x)} = x + \frac{1}{4}\cos{2x} + C\)

\(I - J = \int{\frac{(\sin{x} - \cos{x})(1 + \sin{x}\cos{x})}{\sin{x} + \cos{x}}\text{d}x} = -\int{\frac{1 + \sin{x}\cos{x}}{\sin{x} + \cos{x}}\text{d}(\sin{x} + \cos{x})}\),令 \(t = \sin{x} + \cos{x}\),则 \(t^{2} = \sin^{2}{x} + 2\sin{x}\cos{x} + \cos^{2}{x} = 1 + 2\sin{x}\cos{x} \iff \sin{x}\cos{x} = \frac{t^{2} - 1}{2}\),故 \(I - J = -\int{\frac{\frac{t^{2} - 1}{2} + 1}{t}\text{d}t} = -\frac{1}{2}\int{(t + \frac{1}{t})\text{d}t} = -\frac{1}{4}t^{2} - \frac{1}{2}\ln|t| + C^{'} = -\frac{1}{4}(\sin{x} + \cos{x})^{2} - \frac{1}{2}\ln|\sin{x} + \cos{x}| + C^{'}\)

解得 \(I = \frac{1}{2}x + \frac{1}{8}\cos{2x} - \frac{1}{8}(\sin{x} + \cos{x})^{2} - \frac{1}{4}\ln|\sin{x} + \cos{x}| + C_{1}\)\(J = \frac{1}{2}x + \frac{1}{8}\cos{2x} + \frac{1}{8}(\sin{x} + \cos{x})^{2} + \frac{1}{4}\ln|\sin{x} + \cos{x}| + C_{2}\)

posted @ 2025-06-21 13:31  Schucking_Sattin  阅读(59)  评论(0)    收藏  举报