高等数学预习-极限
高等数学预习-极限
\(\epsilon - N\) 定义
设 \(\{x_{n}\}\) 是给定的一个数列,若存在一个实数 \(l\),对于任意给定的正数 \(\epsilon\),无论它多么小,都存在一个自然数 \(N\),使得
\[|a_{n} - l| < \epsilon, \text{只要 } n > N \\ \]则称 \(\{x_{n}\}\) 以 \(l\) 为极限,记作 \(\lim\limits_{n \to \infty}{x_{n}} = l\)。
假若数列 \(\{x_{n}\}\) 以某实数 \(l\) 为极限,则称该数列极限存在;否则称该数列发散。
夹逼定理
若数列 \(\{x_{n}\}, \{y_{n}\}, \{z_{n}\}\) 满足下列条件:
- 存在自然数 \(N_{0}\),当 \(n > N_{0}\) 时,有 \(y_{n} < x_{n} < z_{n}\)
- \(\lim\limits_{n \to \infty}{y_{n}} = l\),\(\lim\limits_{n \to \infty}{z_{n}} = l\)
则数列 \(\{x_{n}\}\) 极限存在,且 \(\lim\limits_{n \to \infty}{x_{n}} = l\)。
证明:
根据定义,对任意给定正数 \(\epsilon\),存在正整数 \(N_{1}\) 和 \(N_{2}\),使得
也即有
取 \(N = \max\{N_{0}, N_{1}, N_{2}\}\),则有
也即
证毕。
等价无穷小量
当 \(x \to 0\) 时,有以下等价无穷小量:
- \(e^{x} - 1 \sim \ln(x + 1) \sim \sin{x} \sim \arcsin{x} \sim \tan{x} \sim \arctan{x} \sim x\)
- \(a^{x} - 1 \sim x\ln{a}\),\((1 + x)^{a} - 1 \sim ax\)
- \(1 - \cos{x} \sim x - \ln(x + 1) \sim e^{x} - x - 1 \sim \frac{x^{2}}{2}\)
- \(x - \sin{x} \sim \frac{x^{3}}{6}\),\(x - \arcsin{x} \sim -\frac{x^{3}}{6}\),\(x - \tan{x} \sim -\frac{x^{3}}{3}\),\(x - \arctan{x} \sim \frac{x^{3}}{3}\),\(\tan{x} - \sin{x} \sim \frac{1}{2}x^{3}\)
- \(x^{n} - 1 \sim n(x - 1)\)
一个应用的例子:
求极限 \(\lim\limits_{x \to 0}\frac{x - \sin{x}}{(1 - \cos{x})\tan{x}}\)。
\(\lim\limits_{x \to 0}\frac{x - \sin{x}}{(1 - \cos{x})\tan{x}} = \lim\limits_{x \to 0}\frac{\frac{1}{6}x^{3}}{\frac{1}{2}x^{2} \times x} = \frac{1}{3}\)。
利用复合的思想运用等价无穷小量:
求极限 \(\lim\limits_{x \to \infty}\frac{\ln(1 + 2x^2) + \ln(1 - x^{2})}{x\sin{x}}\)。
\(\lim\limits_{x \to \infty}\frac{\ln(1 + 2x^2) + \ln(1 - x^{2})}{x\sin{x}} = \lim\limits_{x \to \infty}\frac{\ln(1 + 2x^2) + \ln(1 - x^{2})}{x^{2}} = \lim\limits_{x \to \infty}\frac{\ln(1 + 2x^2)}{x^{2}} + \lim\limits_{x \to \infty}\frac{\ln(1 - x^{2})}{x^{2}} = \lim\limits_{x \to \infty}\frac{2x^{2}}{x^{2}} + \lim\limits_{x \to \infty}\frac{-x^{2}}{x^{2}} = 2 - 1 = 1\)。
求极限
-
一个重要极限:\(\lim\limits_{n \to \infty}\left( 1 + \frac{1}{n} \right)^{n} = e\)
当出现 \(1^{\infty}\) 型的极限时,就可以考虑往该形式方向配凑。
-
\(\lim\limits_{n \to \infty}\sqrt[n]{a} = 1(a > 0)\);\(\lim\limits_{n \to \infty}\sqrt[n]{n\text{的多项式}} = 1\)
-
极限的运算法则(以下法则对 \(x \to x_{0}\) 和 \(x \to \infty\) 都成立):
加减法:若 \(\lim\limits{f(x)} = A, \lim\limits{g(x)} = B\),则 \(\lim\limits{(f(x) \pm g(x))} = A \pm B\)。
乘法:若 \(\lim\limits{f(x)} = A, \lim\limits{g(x)} = B\),则 \(\lim\limits{f(x)g(x)} = AB\)。
除法:若 \(\lim\limits{f(x)} = A, \lim\limits{g(x)} = B \neq 0\),则 \(\lim\limits{\frac{f(x)}{g(x)}} = \frac{A}{B}\)。
-
根据极限的乘法原理,非零因子可直接代入极限值。
比如:\(\lim\limits_{x \to 0}\frac{x\cos{x}}{\sin{x}} = \lim\limits_{x \to 0}\frac{x \times 1}{\sin{x}} = 1\) 是正确的;
\(\lim\limits_{x \to 0}\frac{x\cos{x}}{\sin{x}} = \lim\limits_{x \to 0}\frac{0 \times \cos{x}}{\sin{x}} = 0\) 是错误的,不能直接代入 \(0\);
\(\lim\limits_{x \to 1}\left( \frac{x}{x - 1} - \frac{1}{\ln{x}} \right) = \lim\limits_{x \to 1}\left( \frac{1}{x - 1} - \frac{1}{\ln{x}} \right)\) 是错误的,因为 \(\frac{x}{x - 1}\) 中的分子 \(x\) 并非整体的因子,不能直接代入。
-
对因式进行等价无穷小量代换的本质也是极限的乘法原理。
比如:\(\lim\limits_{x \to 0}\frac{1}{x\sin{x}}(1 - \cos{x}) = \lim\limits_{x \to 0}\frac{1}{x^{2}}\times \frac{x^{2}}{2} = \frac{1}{2}\) 是正确的;
而 \(\lim\limits_{x \to 0}\left( \frac{1}{x\sin{x}} - \frac{1}{x\tan{x}} \right) = \lim\limits_{x \to 0}\left( \frac{1}{x^{2}} - \frac{1}{x^{2}} \right) = 0\) 是错误的,因为该式中的 \(\sin{x}\) 和 \(\tan{x}\) 并非整体的因式,不能直接代换。
-
关于拆极限:
如果拆出来的极限都不存在,则不能拆;
否则,只要有算得出的极限就可以尝试拆出来。
-
当 \(\lim\limits_{x \to 0}u(x) = 1\) 时,\(\lim\limits_{x \to 0}u(x)^{v(x)} = \lim\limits_{x \to 0}e^{v(x)\ln{u(x)}} = e^{\lim\limits_{x \to 0}v(x)(u(x) - 1)}\)。
例题
求极限 \(\lim\limits_{n \to \infty}\sum\limits_{i = 1}^{n}\frac{i}{n^{2} + n + i}\)。
\(\sum\limits_{i = 1}^{n}\frac{i}{n^{2} + n + i} \le \sum\limits_{i = 1}^{n}\frac{i}{n^{2} + n} = \frac{1}{n^{2} + n}\sum\limits_{i = 1}^{n}i = \frac{1}{n(n + 1)} \times \frac{n(n + 1)}{2} = \frac{1}{2}\),
\(\sum\limits_{i = 1}^{n}\frac{i}{n^{2} + n + i} \ge \sum\limits_{i = 1}^{n}\frac{i}{n^{2} + n + n} = \frac{1}{n(n + 2)}\sum\limits_{i = 1}^{n}i = \frac{1}{n(n + 2)} \times \frac{n(n + 1)}{2} = \frac{n + 1}{2(n + 2)}\)。
记 \(x_{n} = \sum\limits_{i = 1}^{n}\frac{i}{n^{2} + n + i}\),\(y_{n} = \frac{n + 1}{2(n + 2)}\),\(z_{n} = \frac{1}{2}\),而 \(\lim\limits_{n \to \infty}y_{n} = \lim\limits_{n \to \infty}z_{n} = \frac{1}{2}\) 且 \(z_{n} \le x_{n} \le y_{n}\),
故原式 \(\lim\limits_{n \to \infty}x_{n} = \frac{1}{2}\)。
设 \(a_{i} > 0(i = 1, 2, \cdots , m)\),求极限 \(\lim\limits_{n \to \infty}{\sqrt[n]{a_{1}^{n} + a_{2}^{n} + \cdots + a_{m}^{n}}}\)。
令 \(a_{max}\) 为 \(a_{1}, a_{2}, \cdots, a_{m}\) 中的最大值,\(x_{n} = \sqrt[n]{a_{1}^{n} + a_{2}^{n} + \cdots + a_{m}^{n}}\),\(y_{n} = \sqrt[n]{a_{max}^{n}} = a_{max}\),\(z_{n} = \sqrt[n]{ma_{max}^{n}} = \sqrt[n]{m}a_{max}\)。
因为 \(y_{n} \le x_{n} \le z_{n}\) 且 \(\lim\limits_{n \to \infty}y_{n} = \lim\limits_{n \to \infty}z_{n} = a_{max}\),所以 \(\lim\limits_{n \to \infty}x_{n} = a_{max}\)。
求极限 \(\lim\limits_{n \to \infty}\sqrt[n]{1 + \frac{1}{2} + \cdots + \frac{1}{n}}\)。
令 \(x_{n} = \sqrt[n]{1 + \frac{1}{2} + \cdots + \frac{1}{n}}\),\(y_{n} = 1\),\(z_{n} = \sqrt[n]{n}\)。
因为 \(y_{n} \le x_{n} \le z_{n}\) 且 \(\lim\limits_{n \to \infty}y_{n} = \lim\limits_{n \to \infty}z_{n} = 1\),所以 \(\lim\limits_{n \to \infty}x_{n} = 1\)。
求极限 \(\lim\limits_{n \to \infty}\sqrt[n]{\frac{1 \times 3 \times 5 \times \cdots \times (2n - 1)}{2 \times 4 \times 6 \times \cdots \times 2n}}\)。
记 \(x_{n} = \sqrt[n]{\frac{1 \times 3 \times 5 \times \cdots \times (2n - 1)}{2 \times 4 \times 6 \times \cdots \times 2n}}\)。
\(x_{n} = \frac{1}{2n} \times \frac{3}{2} \times \frac{5}{4} \times \cdots \frac{2n - 1}{2n - 2} > \frac{1}{2n}\),记 \(y_{n} = \frac{1}{2n}\)。
\(x_{n} = \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2n - 1}{2n} < \frac{1}{2}\),记 \(z_{n} = \frac{1}{2}\)。
因为 \(y_{n} < x_{n} < z_{n}\) 且 \(\lim\limits_{n \to \infty}y_{n} = \lim\limits_{n \to \infty}z_{n} = 1\),所以 \(\lim\limits_{n \to \infty}x_{n} = 1\)。
求极限 \(\lim\limits_{x \to 0}\left( \frac{1}{x\sin{x}} - \frac{1}{x\tan{x}} \right)\)。
\(\lim\limits_{x \to 0}\left( \frac{1}{x\sin{x}} - \frac{1}{x\tan{x}} \right) = \lim\limits_{x \to 0}\frac{1}{x\sin{x}}(1 - \cos{x}) = \lim\limits_{x \to 0}\frac{1}{x^{2}}\times \frac{x^{2}}{2} = \frac{1}{2}\)。
求极限 \(\lim\limits_{x \to 1}\left( \frac{x}{x - 1} - \frac{1}{\ln{x}} \right)\)。
令 \(t = x - 1\)。则原极限等于 \(\lim\limits_{t \to 0}\left( \frac{t + 1}{t} - \frac{1}{\ln(t + 1)} \right) = 1 + \lim\limits_{t \to 0}\left( \frac{1}{t} - \frac{1}{\ln(t + 1)} \right) = 1 + \lim\limits_{t \to 0}\frac{\ln(t + 1) - t}{t\ln(t + 1)} = 1 + \lim\limits_{t \to 0}\frac{-\frac{1}{2}t^{2}}{t^{2}} = 1 -\frac{1}{2} = \frac{1}{2}\)。
求极限 \(\lim\limits_{x \to 0}\frac{e^{x^{2}} - e^{2 - 2\cos{x}}}{x^{4}}\)。
\(\lim\limits_{x \to 0}\frac{e^{x^{2}} - e^{2 - 2\cos{x}}}{x^{4}} = \lim\limits_{x \to 0}\frac{e^{2 - 2\cos{x}}(e^{x^{2} - 2 + 2\cos{x}} - 1)}{x^{4}} = \lim\limits_{x \to 0}\frac{e^{x^{2} - 2 + 2\cos{x}} - 1}{x^{4}} = \lim\limits_{x \to 0}\frac{x^{2} - 2 + 2\cos{x}}{x^{4}} = \lim\limits_{x \to 0}\frac{2x - 2\sin{x}}{4x^{3}} = \lim\limits_{x \to 0}\frac{2\times \frac{1}{6}x^{3}}{4x^{3}} = \frac{1}{12}\)。
求极限 \(\lim\limits_{x \to 0}\left[ \frac{\ln(1 + x)}{x} \right]^{\frac{1}{e^{x} - 1}}\)。
法一:
\(\lim\limits_{x \to 0}\frac{\ln(1 + x)}{x} = 1\),故 \(\lim\limits_{x \to 0}\left\{ \left[ 1 + \frac{\ln(1 + x) - x}{x} \right]^{\frac{x}{\ln(1 + x) - x}} \right\}^{\frac{\ln(1 + x) - x}{x} \times \frac{1}{e^{x} - 1}} = e^{\lim\limits_{x \to 0}\frac{\ln(1 + x) - x}{x} \times \frac{1}{e^{x} - 1}}\)。
其中 \(\lim\limits_{x \to 0} \frac{\ln(1 + x) - x}{x} \times \frac{1}{e^{x} - 1} = \lim\limits_{x \to 0}\frac{-\frac{1}{2}x^{2}}{x} \times \frac{1}{x} = -\frac{1}{2}\),故原式极限为 \(e^{-\frac{1}{2}}\)。
法二:
\(\lim\limits_{x \to 0}\left[ \frac{\ln(1 + x)}{x} \right]^{\frac{1}{e^{x} - 1}} = e^{\lim\limits_{x \to 0} \frac{1}{e^{x} - 1} \times \ln\frac{\ln(1 + x)}{x}}\)。
其中 \(\lim\limits_{x \to 0}\frac{\ln(1 + x)}{x} = 1\),所以 \(\lim\limits_{x \to 0}\ln\frac{\ln(1 + x)}{x} = \lim\limits_{x \to 0} \frac{\ln(1 + x) - x}{x} = \lim\limits_{x \to 0} \frac{-\frac{1}{2}x^{2}}{x} = \lim\limits_{x \to 0}-\frac{1}{2}x\),
所以 \(\lim\limits_{x \to 0}\frac{1}{e^{x} - 1} \times \ln\frac{\ln(1 + x)}{x} = \lim\limits_{x \to 0} \frac{1}{x}\times (-\frac{1}{2}x) = -\frac{1}{2}\),故原式极限为 \(e^{-\frac{1}{2}}\)。
求极限 \(\lim\limits_{x \to 0}\frac{\ln(1 - \arctan{2x}) + x^{2}}{\sqrt{1 + x} - 1}\)。
\(\lim\limits_{x \to 0}\frac{\ln(1 - \arctan{2x}) + x^{2}}{\sqrt{1 + x} - 1} = \lim\limits_{x \to 0 }\frac{\ln(1 - \arctan{2x}) + x^{2}}{\frac{1}{2}x} = \lim\limits_{x \to 0} \frac{2\ln(1 - \arctan{2x})}{x} = \lim\limits_{x \to 0}\frac{-2\arctan{2x}}{x} = \lim\limits_{x \to 0}\frac{-2 \times 2x}{x} = -4\)。
求极限 \(\lim\limits_{x \to 0}\frac{\sin{x} - x\cos{x}}{x^{3}}\)。
\(\lim\limits_{x \to 0}\frac{\sin{x} - x\cos{x}}{x^{3}} = \lim\limits_{x \to 0}\frac{\tan{x} - x}{x^{3}\cos{x}} = \lim\limits_{x \to 0}\frac{\frac{1}{3}x^{3}}{x^{3}} = \frac{1}{3}\)。
求极限 \(\lim\limits_{n \to \infty}\left( \frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3} \right)^{n}(a > 0, b > 0, c > 0)\)。
\(\lim\limits_{n \to \infty}\left( \frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3} \right)^{n} = e^{\lim\limits_{n \to \infty}{n\ln\frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3}}}\)。
其中 \(\lim\limits_{n \to \infty}{n\ln\frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3}} = \lim\limits_{n \to \infty}n\times\left( \frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3} - 1 \right) = \lim\limits_{n \to \infty}{n\times \frac{a^{\frac{1}{n}} - 1}{3}} + \lim\limits_{n \to \infty}{n\times \frac{b^{\frac{1}{n}} - 1}{3}} + \lim\limits_{n \to \infty}{n\times \frac{c^{\frac{1}{n}} - 1}{3}}\)。
\(\lim\limits_{n \to \infty}n\times \frac{a^{\frac{1}{n}} - 1}{3} = \lim\limits_{n \to \infty}n\times \frac{\frac{1}{n}\ln{a}}{3} = \frac{\ln{a}}{3}\)。同理可得 \(\lim\limits_{n \to \infty}n\times \frac{b^{\frac{1}{n}} - 1}{3} = \frac{\ln{b}}{3}\),\(\lim\limits_{n \to \infty}n\times \frac{c^{\frac{1}{n}} - 1}{3} = \frac{\ln{c}}{3}\)。
故 \(\lim\limits_{n \to \infty}{n\ln\frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3}} = \frac{\ln(abc)}{3}\),\(\lim\limits_{n \to \infty}\left( \frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3} \right)^{n} = e^{\frac{\ln(abc)}{3}} = \sqrt[3]{abc}\)。

浙公网安备 33010602011771号