P2221 [HAOI2012]高速公路
P2221 [HAOI2012]高速公路
Solution
注意两个方向都可以走QWQ
直接表达期望:
\[Ex(l, r) = \frac{\sum\limits_{i = l}^{r}\sum\limits_{j = l}^{r}d(i, j)}{\binom{r - l + 1}{2}}
\]
发现问题在上面的式子,我们记为 \(S\)。很自然地想到对每一条线段统计贡献,可以得到
\[S = \sum\limits_{i = l}^{r - 1}v_i(i - l + 1)(r - i)
\]
接下来的思路是,把式子拆出只与 \(v_i\) 相关的成分,而使其他部分可以 \(O(1)\) 得出。
\[\begin{aligned}
S &= \sum\limits_{i = l}^{r - 1}v_i(ir - lr + r - i^2 + il - i) \\
&= \sum\limits_{i = l}^{r - 1}v_i[(r - lr) + (l + r - 1)i - i^2]
\end{aligned}
\]
记 \(s1 = \sum\limits_{i = l}^{r - 1}v_i, s2 = \sum\limits_{i = l}^{r - 1}i\times v_i, s3 = \sum\limits_{i = l}^{r - 1}i^2 \times v_i\)。则
\[S = (r - lr)s1 + (l + r - 1)s2 - s3
\]
于是用数据结构将三个和式分别维护。
#include<bits/stdc++.h>
#define ls(x) x << 1
#define rs(x) x << 1 | 1
#define LL long long
using namespace std;
const int N = 1e5 + 5;
int n, Q;
LL GCD(LL a, LL b)
{
if(!b) return a;
return GCD(b, a % b);
}
struct Nagisa
{
LL add;
};
struct SegTree
{
int l, r;
LL sum1, sum2, sum3;
LL sum4, sum5; // sum{i}, sum{i^2}
Nagisa nag;
}tr[4 * N];
void pushup(SegTree &u, SegTree L, SegTree R)
{
u.sum1 = L.sum1 + R.sum1;
u.sum2 = L.sum2 + R.sum2;
u.sum3 = L.sum3 + R.sum3;
}
void build(int p, int l, int r)
{
tr[p].l = l;
tr[p].r = r;
if(l == r)
{
tr[p].sum1 = tr[p].sum2 = tr[p].sum3 = 0;
tr[p].sum4 = l;
tr[p].sum5 = 1LL * l * l;
return;
}
int mid = l + (r - l) / 2;
build(ls(p), l, mid);
build(rs(p), mid + 1, r);
pushup(tr[p], tr[ls(p)], tr[rs(p)]);
tr[p].sum4 = tr[ls(p)].sum4 + tr[rs(p)].sum4;
tr[p].sum5 = tr[ls(p)].sum5 + tr[rs(p)].sum5;
}
void cal(SegTree &u, int v)
{
u.sum1 += 1LL * (u.r - u.l + 1) * v;
u.sum2 += u.sum4 * v;
u.sum3 += u.sum5 * v;
u.nag.add += v;
}
void pushdown(int p)
{
if(tr[p].nag.add)
{
cal(tr[ls(p)], tr[p].nag.add);
cal(tr[rs(p)], tr[p].nag.add);
tr[p].nag.add = 0;
}
}
void modify(int p, int l, int r, int v)
{
if(tr[p].l >= l && tr[p].r <= r)
{
cal(tr[p], v);
return;
}
pushdown(p);
int mid = tr[p].l + (tr[p].r - tr[p].l) / 2;
if(mid >= l) modify(ls(p), l, r, v);
if(mid < r) modify(rs(p), l, r, v);
pushup(tr[p], tr[ls(p)], tr[rs(p)]);
}
SegTree query(int p, int l, int r)
{
if(tr[p].l >= l && tr[p].r <= r)
return tr[p];
pushdown(p);
int mid = tr[p].l + (tr[p].r - tr[p].l) / 2;
if(mid < l) return query(rs(p), l, r);
else if(mid >= r) return query(ls(p), l, r);
else
{
SegTree L = query(ls(p), l, r);
SegTree R = query(rs(p), l, r);
SegTree res;
pushup(res, L, R);
return res;
}
}
int main()
{
scanf("%d %d", &n, &Q);
build(1, 1, n - 1);
while(Q--)
{
char op;
int l, r, v;
scanf(" %c", &op);
if(op == 'C')
{
scanf("%d %d %d", &l, &r, &v);
if(l == r) continue;
modify(1, l, r - 1, v);
}
else
{
scanf("%d %d", &l, &r);
SegTree res = query(1, l, r - 1);
LL x = 1LL * (l + r - 1) * res.sum2 - 1LL * r * (l - 1) * res.sum1 - res.sum3;
LL y = 1LL * (r - l + 1) * (r - l) / 2;
LL d = GCD(x, y);
printf("%lld/%lld\n", x / d, y / d);
}
}
return 0;
}

浙公网安备 33010602011771号