P11885 [RMI 2024] 跑酷 题解

Description

\(n\) 个岛,编号 \(1\sim n\)。给定长度为 \((n-1)\) 的正整数数列 \(v_1,v_2,\ldots,v_{n-1}\)

当你在岛 \(i\)\(1\le i\lt n\))上时,可以跳到岛 \((i+1)\) 上或者岛 \(v_i\) 上。这里,\(i\lt v_i\)

给定正整数 \(k\)。对于岛 \(i\),定义 \(f(i,k)\) 表示从它出发跳至多 \(k\) 步能够跳到的岛有多少个(包括自身)。

此外,\(v_i\) 还满足特殊性质对于任意 \(1\le i\lt j\lt n\),要么 \(v_i\le j\),要么 \(v_j\le v_i\)

对于 \(i=1,2,\ldots,n\),求出 \(f(i,k)\)

补充说明:即使岛 \(i\) 有多种在 \(k\) 步内跳到岛 \(j\) 的方式,岛 \(j\) 也只算一次。

\(1\le n\le 3\times 10^5\)

Solution

假设要从 \(i\) 走到 \(j\),由于特殊性质的存在,如果 \(v_i\leq j\) 则一定走 \(v_i\),否则才走 \(i+1\)

考虑对于起点 \(i\) 从大到小枚举,同时用数据结构维护每个终点的距离 \(dis_j\)。容易发现对于 \([i+1,v_i-1]\) 内的终点只需要加一,而由于 \(i+1\) 走到 \([v_i,n]\) 必然会经过 \(v_i\),所以 \([v_i,n]\) 内的距离需要加 \(1-dis_{v_i}\)

于是问题转化为了:区间加,查询全局小于等于某个数的个数。

分块维护即可。

时间复杂度:\(O(n\sqrt n)\)

Code(被卡常了)

#include <bits/stdc++.h>

// #define int int64_t

const int kMaxN = 3e5 + 5, kMaxB = 155, kMaxT = kMaxN / (kMaxB - 5) + 5;

int n, k, b, tot;
int a[kMaxN], f[kMaxN], ans[kMaxN];
int bel[kMaxN], L[kMaxT], R[kMaxT], val[kMaxN], cntu[kMaxT], tag[kMaxT], unq[kMaxT][kMaxB], cnt[kMaxT][kMaxB];
int pos[kMaxT];

void prework() {
  // b = round(sqrtl(n * std::__lg(n)));
  b = std::min(n, 150);
  tot = (n + b - 1) / b;
  for (int i = 1; i <= tot; ++i) {
    L[i] = (i - 1) * b + 1, R[i] = std::min(i * b, n);
    pos[i] = cntu[i] = 1, unq[i][1] = 0, cnt[i][1] = R[i] - L[i] + 1;
    for (int j = L[i]; j <= R[i]; ++j)
      bel[j] = i;
  }
}

void rebuild(int x, int v) {
  static int unq[kMaxN * 2], cnt[kMaxN * 2] = {0};
  static int unq1[kMaxN * 2], unq2[kMaxN * 2] = {0};
  static bool vis[kMaxN * 2];
  int mm = cntu[x];
  int m1 = 0, m2 = 0;
  for (int i = L[x]; i <= R[x]; ++i) ++cnt[val[i] += tag[x]];
  for (int i = 1; i <= mm; ++i) {
    unq[i] = ::unq[x][i] + tag[x];
    int vv = unq[i] + v;
    if (!vis[unq[i]] && cnt[unq[i]]) unq1[++m1] = unq[i], vis[unq[i]] = 1;
    if (vv >= 0 && !vis[vv] && cnt[vv]) unq2[++m2] = vv, vis[vv] = 1;
  }
  // for (int i = 1; i <= mm; ++i)
  //   if (unq[i] + v >= 0 && cnt[unq[i] + v] && !vis[unq[i] + v])
  //     unq2[++m2] = unq[i] + v;
  // for (int i = 1; i <= m1; ++i) assert(cnt[unq1[i]]);
  // for (int i = 1; i <= m2; ++i) assert(!vis[unq2[i]]);
  // for (int i = 1; i <= mm; ++i) vis[unq[i]] = 0;
  cntu[x] = tag[x] = 0;
  for (int i = 1, j = 1; i <= m1 || j <= m2;) {
    int v = 0;
    if (i <= m1 && (j > m2 || unq1[i] < unq2[j])) v = unq1[i], ++i;
    else v = unq2[j], ++j;
    // assert(cnt[v]);
    ::unq[x][++cntu[x]] = v;
    ::cnt[x][cntu[x]] = ::cnt[x][cntu[x] - 1] + cnt[v];
    vis[v] = cnt[v] = 0;
  }
  // for (int i = L[x]; i <= R[x]; ++i) assert(!cnt[val[i]]);
  // int i = 1, j = 1;
  // for (; j <= mm && unq[j] + v < 0; ++j) {}
  // for (; i <= mm || j <= mm;) {
  //   for (; i <= mm && !cnt[unq[i]]; ++i) {}
  //   for (; j <= mm && !cnt[unq[j] + v]; ++j) {}
  //   int v1 = unq[i], v2 = unq[j] + v;
  //   if (i <= mm && (j > mm || v1 <= v2)) {
  //     ::unq[x][++cntu[x]] = v1;
  //     ::cnt[x][cntu[x]] = ::cnt[x][cntu[x] - 1] + cnt[v1];
  //     cnt[v1] = 0;
  //   } else if (v2 >= 0 && cnt[v2]) {
  //     ::unq[x][++cntu[x]] = v2;
  //     ::cnt[x][cntu[x]] = ::cnt[x][cntu[x] - 1] + cnt[v2];
  //     cnt[v2] = 0;
  //   }
  // }
  // int mm = 0;
  // for (int i = L[x]; i <= R[x]; ++i) {
  //   ++cnt[val[i] += tag[x]];
  //   unq[++mm] = val[i];
  // }
  // std::sort(unq + 1, unq + 1 + mm);
  // mm = std::unique(unq + 1, unq + 1 + mm) - (unq + 1);
  // cntu[x] = mm, tag[x] = 0;
  // for (int i = 1; i <= mm; ++i) {
  //   ::unq[x][i] = unq[i];
  //   ::cnt[x][i] = ::cnt[x][i - 1] + cnt[unq[i]];
  //   cnt[unq[i]] = 0;
  // }
  pos[x] = 0;
  for (; pos[x] < cntu[x] && ::unq[x][pos[x] + 1] <= k; ++pos[x]) {}
  // for (int i = L[x]; i <= R[x]; ++i) assert(!cnt[val[i]]);
}

void update(int l, int r, int v) {
  if (l > r) return;
  int x = bel[l], y = bel[r];
  if (x == y) {
    for (int i = l; i <= r; ++i) val[i] += v;
    rebuild(x, v);
  } else {
    for (int i = x + 1; i < y; ++i) {
      tag[i] += v;
      for (; pos[i] < cntu[i] && unq[i][pos[i] + 1] + tag[i] <= k; ++pos[i]) {}
      for (; pos[i] && unq[i][pos[i]] + tag[i] > k; --pos[i]) {}
    }
    for (int i = l; i <= R[x]; ++i) val[i] += v;
    for (int i = L[y]; i <= r; ++i) val[i] += v;
    rebuild(x, v), rebuild(y, v);
  }
}

int query(int i) { return val[i] + tag[bel[i]]; }

int query(int l, int v) {
  int ret = 0, x = bel[l];
  // for (int i = l; i <= n; ++i) ret += (query(i) <= v);
  for (int i = l; i <= R[x]; ++i) ret += (val[i] + tag[x] <= v);
  // for (int i = x + 1; i <= tot; ++i) ret += cnt[i][std::upper_bound(unq[i] + 1, unq[i] + 1 + cntu[i], v - tag[i]) - unq[i] - 1];
  for (int i = x + 1; i <= tot; ++i) ret += cnt[i][pos[i]];
  return ret;
}

void dickdreamer() {
  std::cin >> n >> k;
  for (int i = 1; i < n; ++i) std::cin >> a[i];
  a[n] = n + 1;
  std::fill_n(f + 1, n, k + 1);
  prework();
  for (int i = n; i; --i) {
    // f[i] = 0;
    // for (int j = i + 1; j < a[i]; ++j) ++f[j];
    update(i + 1, a[i] - 1, 1);
    update(a[i], n, 1 - query(a[i]));
    ans[i] = query(i, k);
    // for (int j = n; j >= a[i]; --j) f[j] -= f[a[i]] - 1;
    // for (int j = i; j <= n; ++j) ans[i] += (f[j] <= k);
  }
  for (int i = 1; i <= n; ++i) std::cout << ans[i] << ' ';
}

int32_t main() {
#ifdef ORZXKR
  freopen("in.txt", "r", stdin);
  freopen("out.txt", "w", stdout);
#endif
  std::ios::sync_with_stdio(0), std::cin.tie(0), std::cout.tie(0);
  int T = 1;
  // std::cin >> T;
  while (T--) dickdreamer();
  // std::cerr << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
  return 0;
}
posted @ 2025-03-17 11:42  下蛋爷  阅读(53)  评论(0)    收藏  举报