证明 (5/8)已弃坑

题目

\(\mathcal{No.5:}\)

  • 咕咕咕


\(\mathcal{No.6:}\)

  • \(解:\)

    \(\because\ 2^{68}=(2^3)^{18}*2^{14}=8^{18}*2^{14}\)

    \(\therefore\ 2^{68}\equiv8^{18}*2^{14}\ (\mod\ 19)\)

    \(\because\ 8^{18}\equiv1\ (\mod\ 19)\)

    \(\therefore\ 8^{18}*2^{14}\equiv1*2^{14}\equiv2^{14}\ (\mod\ 19)\)

    \(又\because\ 2^{14}\equiv16384\equiv6\ (\mod\ 19)\)

    \(\therefore\ 2^{68}\mod19=6\)


\(\mathcal{No.7:}\)

  • \(证:\)

    \(\ \ \ \ \ \ a^{25}\equiv a\ (\mod\ 30)\)

    \(\Leftrightarrow\ 30|a^{25}-a\)

    \(\therefore\ 即证30|a^{25}-a\)

    \(\because\ a^{25}-a\)

    \(=a(a^{24}-1^{24})\)

    \(=a(a^{12}-1^{12})(a^{12}+1)\)

    \(=a(a^{6}-1^{6})(a^{6}+1)(a^{12}+1)\)

    \(=a(a^{3}-1^{3})(a^{3}+1^{3})(a^{6}+1)(a^{12}+1)\)

    \(=(a-1)a(a+1)(a^{2}-a+1)(a^{2}+a+1)((a^{2})^{3}+1^{3})((a^{3})^{4}+1^{3})\)

    \(=(a-1)a(a+1)(a^{2}-a+1)(a^{2}+1)(a^{2}+a+1)(a^{4}-a^{2}+1)(a^{4}+1)(a^{8}-a^{4}+1)\)

    \(\because\ a、a+1中必有一数为2倍数;a-1、a、a+1中必有一数为3倍数\)

    \(\therefore\ 6|a^{25}-a\)

    \(\therefore\ 即证5|a^{25}-a\)

    \(又\because\ a-1、a、a+1、a^{2}+1中必有一数为5倍数\)

    \(\therefore\ 5|a^{25}-a\)

    \(\because\gcd(5, 6)=1\)

    \(\therefore\ 30|a^{25}-a\)

    \(\therefore\ a^{25}\equiv a\ (\mod\ 30)\)

    \(证毕\)


\(\mathcal{No.8:}\)

  • \(证:\)

    • \(1)\ 当p=2时,q=3\ \Rightarrow\ q>p,得证\)

    • \(2)\ 当p为奇质数时\)

      \(易得2^{p}\equiv 1\ (\mod\ q)\)

      \(\because\ 2^{q-1}\equiv 1\ (\mod\ q)\)

      \(\Rightarrow\ 2^{q-1}\equiv 2^{p}\ (\mod\ q)\)

      \(\therefore\ p为q-1倍数或q-1因数\)

      \(又\because\ q为奇数(2^{p}-1\ mod\ 2=1,q|2^{p}-1)\)

      \(\therefore\ 2|q-1\)

      \(\therefore\ 2p|q-1(2\not|p且p为质数)\ \Rightarrow\ p|\frac{q-1}{2}\ \Rightarrow\ p\leq\frac{q-1}{2}\)

      \(\because\ \frac{q-1}{2} < q\)

      \(\therefore\ p < q\)

      \(证毕\)


\(\mathcal{No.9:}\)

  • \(解:\)

    • \(1)\ 当m=1时,\varphi(m)=1\)

      \(\therefore\ m_{1}=1\)

    • \(2)\ 当m为质数时,可得\varphi(m)=m-1\)

      \(若要使\varphi(m)\mod\ 2=1,则m-1\mod\ 2=1\)

      \(\therefore\ m\mod\ 2=0\Rightarrow m为偶数\)

      \(综上,m_{2}=2\)

    • \(3)\ 当m为合数时:\)

      • \(1.若m有奇素数因子p,则\varphi(m)=\varphi(p)*\cdots=(p-1)*\cdots\)

        \(\because\ p\mod\ 2=1\)
        \(\therefore\ 2|p-1\ \Rightarrow\ 2|\varphi(m)\)

        \(综上,不存在这样的m使\varphi(m)\mod\ 2=1\)

      • \(2.若m=2^{k}(k\geq 2),则\varphi(m)=\frac{m}{2}\)

        \(\because\ k\geq 2\Rightarrow\ 4|m\Rightarrow\ 2|\frac{m}{2}\)

        \(综上,不存在这样的m使\varphi(m)\mod\ 2=1\)

    \(综上,m_{1}=1,m_{2}=2\)


\(\mathcal{No.10:}\)

  • \(证:\)

    咕咕咕

\(\mathcal{No.11:}\)

  • \(证:\)

    \(前置芝士:\gcd(x,n)=\gcd(n-x,n)\ \ (n>x)\)

    \(再加上\mathcal{No.9}的讨论,可得出小于m且与m互质的数是成对出现的\ (m > 2)\)

    • \(1)\ 当m=2时,\varphi(2)=1,(\sum_{i=1}^{i<m}i\ (\gcd(i, m)=1))=1=\frac{\varphi(2)*2}{2},证毕\)
    • \(2)\ 当m>2时,可得每对与m互质的数(x,m-x)的平均数为\frac{m}{2},与m互质的数总个数为\varphi(m)\)
      \(\therefore\ (\sum_{i=1}^{i<m}i\ (\gcd(i, m)=1))=\frac{\varphi(m)*m}{2},证毕\)

    \(综上,原结论得证\)


\(\mathcal{No.12:}\)

  • 咕咕咕


posted @ 2020-07-19 22:07  佐世保の时雨酱  阅读(107)  评论(0)    收藏  举报