证明 (5/8)已弃坑
\(\mathcal{No.5:}\)
-
咕咕咕
\(\mathcal{No.6:}\)
-
\(解:\)
\(\because\ 2^{68}=(2^3)^{18}*2^{14}=8^{18}*2^{14}\)
\(\therefore\ 2^{68}\equiv8^{18}*2^{14}\ (\mod\ 19)\)
\(\because\ 8^{18}\equiv1\ (\mod\ 19)\)
\(\therefore\ 8^{18}*2^{14}\equiv1*2^{14}\equiv2^{14}\ (\mod\ 19)\)
\(又\because\ 2^{14}\equiv16384\equiv6\ (\mod\ 19)\)
\(\therefore\ 2^{68}\mod19=6\)
\(\mathcal{No.7:}\)
-
\(证:\)
\(\ \ \ \ \ \ a^{25}\equiv a\ (\mod\ 30)\)
\(\Leftrightarrow\ 30|a^{25}-a\)
\(\therefore\ 即证30|a^{25}-a\)
\(\because\ a^{25}-a\)
\(=a(a^{24}-1^{24})\)
\(=a(a^{12}-1^{12})(a^{12}+1)\)
\(=a(a^{6}-1^{6})(a^{6}+1)(a^{12}+1)\)
\(=a(a^{3}-1^{3})(a^{3}+1^{3})(a^{6}+1)(a^{12}+1)\)
\(=(a-1)a(a+1)(a^{2}-a+1)(a^{2}+a+1)((a^{2})^{3}+1^{3})((a^{3})^{4}+1^{3})\)
\(=(a-1)a(a+1)(a^{2}-a+1)(a^{2}+1)(a^{2}+a+1)(a^{4}-a^{2}+1)(a^{4}+1)(a^{8}-a^{4}+1)\)
\(\because\ a、a+1中必有一数为2倍数;a-1、a、a+1中必有一数为3倍数\)
\(\therefore\ 6|a^{25}-a\)
\(\therefore\ 即证5|a^{25}-a\)
\(又\because\ a-1、a、a+1、a^{2}+1中必有一数为5倍数\)
\(\therefore\ 5|a^{25}-a\)
\(\because\gcd(5, 6)=1\)
\(\therefore\ 30|a^{25}-a\)
\(\therefore\ a^{25}\equiv a\ (\mod\ 30)\)
\(证毕\)
\(\mathcal{No.8:}\)
-
\(证:\)
-
\(1)\ 当p=2时,q=3\ \Rightarrow\ q>p,得证\)
-
\(2)\ 当p为奇质数时\)
\(易得2^{p}\equiv 1\ (\mod\ q)\)
\(\because\ 2^{q-1}\equiv 1\ (\mod\ q)\)
\(\Rightarrow\ 2^{q-1}\equiv 2^{p}\ (\mod\ q)\)
\(\therefore\ p为q-1倍数或q-1因数\)
\(又\because\ q为奇数(2^{p}-1\ mod\ 2=1,q|2^{p}-1)\)
\(\therefore\ 2|q-1\)
\(\therefore\ 2p|q-1(2\not|p且p为质数)\ \Rightarrow\ p|\frac{q-1}{2}\ \Rightarrow\ p\leq\frac{q-1}{2}\)
\(\because\ \frac{q-1}{2} < q\)
\(\therefore\ p < q\)
\(证毕\)
-
\(\mathcal{No.9:}\)
-
\(解:\)
-
\(1)\ 当m=1时,\varphi(m)=1\)
\(\therefore\ m_{1}=1\)
-
\(2)\ 当m为质数时,可得\varphi(m)=m-1\)
\(若要使\varphi(m)\mod\ 2=1,则m-1\mod\ 2=1\)
\(\therefore\ m\mod\ 2=0\Rightarrow m为偶数\)
\(综上,m_{2}=2\)
-
\(3)\ 当m为合数时:\)
-
\(1.若m有奇素数因子p,则\varphi(m)=\varphi(p)*\cdots=(p-1)*\cdots\)
\(\because\ p\mod\ 2=1\)
\(\therefore\ 2|p-1\ \Rightarrow\ 2|\varphi(m)\)\(综上,不存在这样的m使\varphi(m)\mod\ 2=1\)
-
\(2.若m=2^{k}(k\geq 2),则\varphi(m)=\frac{m}{2}\)
\(\because\ k\geq 2\Rightarrow\ 4|m\Rightarrow\ 2|\frac{m}{2}\)
\(综上,不存在这样的m使\varphi(m)\mod\ 2=1\)
-
\(综上,m_{1}=1,m_{2}=2\)
-
\(\mathcal{No.10:}\)
-
\(证:\)
咕咕咕
\(\mathcal{No.11:}\)
-
\(证:\)
\(前置芝士:\gcd(x,n)=\gcd(n-x,n)\ \ (n>x)\)
\(再加上\mathcal{No.9}的讨论,可得出小于m且与m互质的数是成对出现的\ (m > 2)\)
- \(1)\ 当m=2时,\varphi(2)=1,(\sum_{i=1}^{i<m}i\ (\gcd(i, m)=1))=1=\frac{\varphi(2)*2}{2},证毕\)
- \(2)\ 当m>2时,可得每对与m互质的数(x,m-x)的平均数为\frac{m}{2},与m互质的数总个数为\varphi(m)\)
\(\therefore\ (\sum_{i=1}^{i<m}i\ (\gcd(i, m)=1))=\frac{\varphi(m)*m}{2},证毕\)
\(综上,原结论得证\)
\(\mathcal{No.12:}\)
-
咕咕咕