P13.torchvision中的数据集使用
13.1Transforms中的类
1.打开pytorch官网
2.找到CIFAR10,这个数据集比较小

3.点击图片上红色的CIFAR10


4.这里的链接就是Pycharm下载到dataset里面的东西


13.2CIFAR10数据集的下载与导入
1.在Pycharm下载,下载到dataset

2.下载成功的成果

13.3打印输出,查看test_set的构成(img,target)和它的classes
点击查看代码
import torchvision
from torch.utils.tensorboard import SummaryWriter
train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)
#多行注释:Ctrl+/
print(test_set[0]) #test_set[i]是由img,target构成的 target是类别
print(test_set.classes)
img,target = test_set[0]
print(img)
print(target)
print(test_set.classes[target])
点击查看代码
D:\anaconda3\envs\pytorch\python.exe D:/DeepLearning/Learn_torch/P13_dataset_transform.py
Files already downloaded and verified
Files already downloaded and verified
(<PIL.Image.Image image mode=RGB size=32x32 at 0x1F81317A880>, 3)
['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
<PIL.Image.Image image mode=RGB size=32x32 at 0x1F81317A8E0>
3
cat
进程已结束,退出代码0
13.4CIFAR10数据集的导入(tensorboard)
1.原始PIL类型转换成tensor数据类型
点击查看代码
原始PIL类型转换成tensor数据类型
dataset_transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor()]
)
2.获取CIFAR10的数据集并对其进行转换
点击查看代码
#将以上transforms的totensor应用到CIFAR10的每一张图片
train_set = torchvision.datasets.CIFAR10(root="./dataset",transform=dataset_transform,train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",transform=dataset_transform,train=False,download=True)

3.写入日志文件“p13”,将数据集导入到tensorboard进行显示
点击查看代码
writer = SummaryWriter("P13")
for i in range(10):
img,target = test_set[i]
writer.add_image("test_set",img,i)
#i:global_step(一个整数,通常表示训练的步数或者迭代次数等,用于在记录多张图像时区分不同阶段的图像)
writer.close()
点击查看代码
D:\anaconda3\envs\pytorch\python.exe D:/DeepLearning/Learn_torch/P13_dataset_transform.py
Files already downloaded and verified
Files already downloaded and verified
进程已结束,退出代码0

4.在终端中打开
tensorboard --logdir=D:\DeepLearning\Learn_torch\P13

5.点击网址

【注:整体代码如下:】
点击查看代码
import torchvision
from torch.utils.tensorboard import SummaryWriter
#原始PIL类型转换成tensor数据类型
dataset_transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor()]
)
# train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
# test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)
#将以上transforms的totensor应用到CIFAR10的每一张图片
train_set = torchvision.datasets.CIFAR10(root="./dataset",transform=dataset_transform,train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",transform=dataset_transform,train=False,download=True)
# #多行注释:Ctrl+/
# print(test_set[0]) #test_set[i]是由img,target构成的 target是类别
# print(test_set.classes)
# img,target = test_set[0]
# print(img)
# print(target)
# print(test_set.classes[target])
writer = SummaryWriter("P13")
for i in range(10):
img,target = test_set[i]
writer.add_image("test_set",img,i)
#i:global_step(一个整数,通常表示训练的步数或者迭代次数等,用于在记录多张图像时区分不同阶段的图像)
writer.close()
浙公网安备 33010602011771号