哈利路亚
Let's take one million years picnic
欢迎来到Sean Cleveland的博客
软工划水日报-paddle房价预测示例程序 4/14

读入数据

通过如下代码读入数据,了解下波士顿房价的数据集结构,数据存放在本地目录下housing.data文件中。

# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ')
data
array([6.320e-03, 1.800e+01, 2.310e+00, ..., 3.969e+02, 7.880e+00, 1.190e+01])

数据形状变换

由于读入的原始数据是1维的,所有数据都连在一起。因此需要我们将数据的形状进行变换,形成一个2维的矩阵,每行为一个数据样本(14个值),每个数据样本包含13个XXX(影响房价的特征)和一个YYY(该类型房屋的均价)。

# 读入之后的数据被转化成1维array,其中array的第0-13项是第一条数据,第14-27项是第二条数据,以此类推.... 
# 这里对原始数据做reshape,变成N x 14的形式
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE','DIS', 
                 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
data = data.reshape([data.shape[0] // feature_num, feature_num])
# 查看数据
x = data[0]
print(x.shape)
print(x)
(14,)
[6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
 4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]

在本案例中,我们将80%的数据用作训练集,20%用作测试集,实现代码如下。通过打印训练集的形状,可以发现共有404个样本,每个样本含有13个特征和1个预测值。

ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
training_data.shape
(404, 14)

数据归一化处理

对每个特征进行归一化处理,使得每个特征的取值缩放到0~1之间。这样做有两个好处:一是模型训练更高效;二是特征前的权重大小可以代表该变量对预测结果的贡献度(因为每个特征值本身的范围相同)。

# 计算train数据集的最大值,最小值,平均值
maximums, minimums, avgs = \
                     training_data.max(axis=0), \
                     training_data.min(axis=0), \
     training_data.sum(axis=0) / training_data.shape[0]
# 对数据进行归一化处理
for i in range(feature_num):
    #print(maximums[i], minimums[i], avgs[i])
    data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])

封装成load data函数

将上述几个数据处理操作封装成load data函数,以便下一步模型的调用,实现方法如下。

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算训练集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]

    # 对数据进行归一化处理
    for i in range(feature_num):
        #print(maximums[i], minimums[i], avgs[i])
        data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data
# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1]
y = training_data[:, -1:]
# 查看数据
print(x[0])
print(y[0])
[0.         0.18       0.07344184 0.         0.31481481 0.57750527
 0.64160659 0.26920314 0.         0.22755741 0.28723404 1.
 0.08967991]
[0.42222222]

模型设计

模型设计是深度学习模型关键要素之一,也称为网络结构设计,相当于模型的假设空间,即实现模型“前向计算”(从输入到输出)的过程。

如果将输入特征和输出预测值均以向量表示,输入特征xxx有13个分量,yyy有1个分量,那么参数权重的形状(shape)是13×113\times113×1。假设我们以如下任意数字赋值参数做初始化:

w=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,−0.1,−0.2,−0.3,−0.4,0.0]w=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0]w=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.1,0.2,0.3,0.4,0.0]

w = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0]
w = np.array(w).reshape([13, 1])

取出第1条样本数据,观察样本的特征向量与参数向量相乘的结果。

x1=x[0]
t = np.dot(x1, w)
print(t)
[0.69474855]

完整的线性回归公式,还需要初始化偏移量bbb,同样随意赋初值-0.2。那么,线性回归模型的完整输出是z=t+bz=t+bz=t+b,这个从特征和参数计算输出值的过程称为“前向计算”。

b = -0.2
z = t + b
print(z)
[0.49474855]

将上述计算预测输出的过程以“类和对象”的方式来描述,类成员变量有参数www和bbb。通过写一个forward函数(代表“前向计算”)完成上述从特征和参数到输出预测值的计算过程,代码如下所示。

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,
        # 此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z

基于Network类的定义,模型的计算过程如下所示。

net = Network(13)
x1 = x[0]
y1 = y[0]
z = net.forward(x1)
print(z)
[2.39362982]

训练配置

模型设计完成后,需要通过训练配置寻找模型的最优值,即通过损失函数来衡量模型的好坏。训练配置也是深度学习模型关键要素之一。

通过模型计算x1x_1x1表示的影响因素所对应的房价应该是zzz, 但实际数据告诉我们房价是yyy。这时我们需要有某种指标来衡量预测值zzz跟真实值yyy之间的差距。对于回归问题,最常采用的衡量方法是使用均方误差作为评价模型好坏的指标,具体定义如下:

Loss=(y−z)2Loss = (y - z)^2Loss=(yz)2

上式中的LossLossLoss(简记为: LLL)通常也被称作损失函数,它是衡量模型好坏的指标。在回归问题中,均方误差是一种比较常见的形式,分类问题中通常会采用交叉熵作为损失函数,在后续的章节中会更详细的介绍。对一个样本计算损失函数值的实现如下:

Loss = (y1 - z)*(y1 - z)
print(Loss)
[3.88644793]

因为计算损失函数时需要把每个样本的损失函数值都考虑到,所以我们需要对单个样本的损失函数进行求和,并除以样本总数NNN。

Loss=1N∑i=1N(yi−zi)2Loss= \frac{1}{N}\sum_{i=1}^N{(y_i - z_i)^2}Loss=N1i=1N(yizi)2

在Network类下面添加损失函数的计算过程如下:

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)
        return cost

使用定义的Network类,可以方便的计算预测值和损失函数。需要注意的是,类中的变量xxx, www,bbb, zzz, errorerrorerror等均是向量。以变量xxx为例,共有两个维度,一个代表特征数量(值为13),一个代表样本数量,代码如下所示。

net = Network(13)
# 此处可以一次性计算多个样本的预测值和损失函数
x1 = x[0:3]
y1 = y[0:3]
z = net.forward(x1)
print('predict: ', z)
loss = net.loss(z, y1)
print('loss:', loss)
predict:  [[2.39362982]
 [2.46752393]
 [2.02483479]]
loss: 3.384496992612791

训练过程

上述计算过程描述了如何构建神经网络,通过神经网络完成预测值和损失函数的计算。接下来介绍如何求解参数www和bbb的数值,这个过程也称为模型训练过程。训练过程是深度学习模型的关键要素之一,其目标是让定义的损失函数LossLossLoss尽可能的小,也就是说找到一个参数解www和bbb,使得损失函数取得极小值。

我们先做一个小测试:如 图5 所示,基于微积分知识,求一条曲线在某个点的斜率等于函数在该点的导数值。那么大家思考下,当处于曲线的极值点时,该点的斜率是多少?


图5:曲线斜率等于导数值


这个问题并不难回答,处于曲线极值点时的斜率为0,即函数在极值点的导数为0。那么,让损失函数取极小值的www和bbb应该是下述方程组的解:

∂L∂w=0\frac{\partial{L}}{\partial{w}}=0wL=0

∂L∂b=0\frac{\partial{L}}{\partial{b}}=0bL=0

将样本数据(x,y)(x, y)(x,y)带入上面的方程组中即可求解出www和bbb的值,但是这种方法只对线性回归这样简单的任务有效。如果模型中含有非线性变换,或者损失函数不是均方差这种简单的形式,则很难通过上式求解。为了解决这个问题,下面我们将引入更加普适的数值求解方法:梯度下降法。

梯度下降法

在现实中存在大量的函数正向求解容易,但反向求解较难,被称为单向函数,这种函数在密码学中有大量的应用。密码锁的特点是可以迅速判断一个密钥是否是正确的(已知xxx,求yyy很容易),但是即使获取到密码锁系统,无法破解出正确的密钥是什么(已知yyy,求xxx很难)。

这种情况特别类似于一位想从山峰走到坡谷的盲人,他看不见坡谷在哪(无法逆向求解出LossLossLoss导数为0时的参数值),但可以伸脚探索身边的坡度(当前点的导数值,也称为梯度)。那么,求解Loss函数最小值可以这样实现:从当前的参数取值,一步步的按照下坡的方向下降,直到走到最低点。这种方法笔者称它为“盲人下坡法”。哦不,有个更正式的说法“梯度下降法”。

训练的关键是找到一组(w,b)(w, b)(w,b),使得损失函数LLL取极小值。我们先看一下损失函数LLL只随两个参数w5w_5w5w9w_9w9变化时的简单情形,启发下寻解的思路。

L=L(w5,w9)L=L(w_5, w_9)L=L(w5,w9)

这里我们将w0,w1,...,w12w_0, w_1, ..., w_{12}w0,w1,...,w12中除w5,w9w_5, w_9w5,w9之外的参数和bbb都固定下来,可以用图画出L(w5,w9)L(w_5, w_9)L(w5,w9)的形式。

net = Network(13)
losses = []
#只画出参数w5和w9在区间[-160, 160]的曲线部分,以及包含损失函数的极值
w5 = np.arange(-160.0, 160.0, 1.0)
w9 = np.arange(-160.0, 160.0, 1.0)
losses = np.zeros([len(w5), len(w9)])

#计算设定区域内每个参数取值所对应的Loss
for i in range(len(w5)):
    for j in range(len(w9)):
        net.w[5] = w5[i]
        net.w[9] = w9[j]
        z = net.forward(x)
        loss = net.loss(z, y)
        losses[i, j] = loss

#使用matplotlib将两个变量和对应的Loss作3D图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)

w5, w9 = np.meshgrid(w5, w9)

ax.plot_surface(w5, w9, losses, rstride=1, cstride=1, cmap='rainbow')
plt.show()
<Figure size 640x480 with 1 Axes>

对于这种简单情形,我们利用上面的程序,可以在三维空间中画出损失函数随参数变化的曲面图。从图中可以看出有些区域的函数值明显比周围的点小。

需要说明的是:为什么这里我们选择w5w_5w5w9w_9w9来画图?这是因为选择这两个参数的时候,可比较直观的从损失函数的曲面图上发现极值点的存在。其他参数组合,从图形上观测损失函数的极值点不够直观。

观察上述曲线呈现出“圆滑”的坡度,这正是我们选择以均方误差作为损失函数的原因之一。图6 呈现了只有一个参数维度时,均方误差和绝对值误差(只将每个样本的误差累加,不做平方处理)的损失函数曲线图。


图6:均方误差和绝对值误差损失函数曲线图


由此可见,均方误差表现的“圆滑”的坡度有两个好处:

  • 曲线的最低点是可导的。
  • 越接近最低点,曲线的坡度逐渐放缓,有助于通过当前的梯度来判断接近最低点的程度(是否逐渐减少步长,以免错过最低点)。

而绝对值误差是不具备这两个特性的,这也是损失函数的设计不仅仅要考虑“合理性”,还要追求“易解性”的原因。

现在我们要找出一组[w5,w9][w_5, w_9][w5,w9]的值,使得损失函数最小,实现梯度下降法的方案如下:

  • 步骤1:随机的选一组初始值,例如:[w5,w9]=[−100.0,−100.0][w_5, w_9] = [-100.0, -100.0][w5,w9]=[100.0,100.0]
  • 步骤2:选取下一个点[w5′,w9′][w_5^{'} , w_9^{'}][w5,w9],使得L(w5′,w9′)<L(w5,w9)L(w_5^{'} , w_9^{'}) < L(w_5, w_9)L(w5,w9)<L(w5,w9)
  • 步骤3:重复步骤2,直到损失函数几乎不再下降。

如何选择[w5′,w9′][w_5^{'} , w_9^{'}][w5,w9]是至关重要的,第一要保证LLL是下降的,第二要使得下降的趋势尽可能的快。微积分的基础知识告诉我们,沿着梯度的反方向,是函数值下降最快的方向,如 图7 所示。简单理解,函数在某一个点的梯度方向是曲线斜率最大的方向,但梯度方向是向上的,所以下降最快的是梯度的反方向。


图7:梯度下降方向示意图


计算梯度

上面我们讲过了损失函数的计算方法,这里稍微改写,为了使梯度计算更加简洁,引入因子12\frac{1}{2}21,定义损失函数如下:

L=12N∑i=1N(yi−zi)2L= \frac{1}{2N}\sum_{i=1}^N{(y_i - z_i)^2}L=2N1i=1N(yizi)2

其中ziz_izi是网络对第iii个样本的预测值:

zi=∑j=012xij⋅wj+bz_i = \sum_{j=0}^{12}{x_i^{j}\cdot w_j} + bzi=j=012xijwj+b

梯度的定义:

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡=(∂L∂w0,∂L∂w1,...,∂L∂w12,∂L∂b)𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = (\frac{\partial{L}}{\partial{w_0}},\frac{\partial{L}}{\partial{w_1}}, ... ,\frac{\partial{L}}{\partial{w_{12}}} ,\frac{\partial{L}}{\partial{b}})gradient=(w0L,w1L,...,w12L,bL)

可以计算出LLL对www和bbb的偏导数:

∂L∂wj=1N∑i=1N(zi−yi)∂zi∂wj=1N∑i=1N(zi−yi)xij\frac{\partial{L}}{\partial{w_j}} = \frac{1}{N}\sum_{i=1}^N{(z_i - y_i)\frac{\partial{z_i}}{\partial{w_j}}} = \frac{1}{N}\sum_{i=1}^N{(z_i - y_i)x_i^{j}}wjL=N1i=1N(ziyi)wjzi=N1i=1N(ziyi)xij

∂L∂b=1N∑i=1N(zi−yi)∂zi∂b=1N∑i=1N(zi−yi)\frac{\partial{L}}{\partial{b}} = \frac{1}{N}\sum_{i=1}^N{(z_i - y_i)\frac{\partial{z_i}}{\partial{b}}} = \frac{1}{N}\sum_{i=1}^N{(z_i - y_i)}bL=N1i=1N(ziyi)bzi=N1i=1N(ziyi)

从导数的计算过程可以看出,因子12\frac{1}{2}21被消掉了,这是因为二次函数求导的时候会产生因子222,这也是我们将损失函数改写的原因。

下面我们考虑只有一个样本的情况下,计算梯度:

L=12(yi−zi)2L= \frac{1}{2}{(y_i - z_i)^2}L=21(yizi)2

z1=x10⋅w0+x11⋅w1+...+x112⋅w12+bz_1 = {x_1^{0}\cdot w_0} + {x_1^{1}\cdot w_1} + ... + {x_1^{12}\cdot w_{12}} + bz1=x10w0+x11w1+...+x112w12+b

可以计算出:

L=12(x10⋅w0+x11⋅w1+...+x112⋅w12+b−y1)2L= \frac{1}{2}{({x_1^{0}\cdot w_0} + {x_1^{1}\cdot w_1} + ... + {x_1^{12}\cdot w_{12}} + b - y_1)^2}L=21(x10w0+x11w1+...+x112w12+by1)2

可以计算出LLL对www和bbb的偏导数:

∂L∂w0=(x10⋅w0+x11⋅w1+...+x112⋅w12+b−y1)⋅x10=(z1−y1)⋅x10\frac{\partial{L}}{\partial{w_0}} = ({x_1^{0}\cdot w_0} + {x_1^{1}\cdot w_1} + ... + {x_1^{12}\cdot w_12} + b - y_1)\cdot x_1^{0}=({z_1} - {y_1})\cdot x_1^{0}w0L=(x10w0+x11w1+...+x112w12+by1)x10=(z1y1)x10

∂L∂b=(x10⋅w0+x11⋅w1+...+x112⋅w12+b−y1)⋅1=(z1−y1)\frac{\partial{L}}{\partial{b}} = ({x_1^{0}\cdot w_0} + {x_1^{1}\cdot w_1} + ... + {x_1^{12}\cdot w_{12}} + b - y_1)\cdot 1 = ({z_1} - {y_1})bL=(x10w0+x11w1+...+x112w12+by1)1=(z1y1)

可以通过具体的程序查看每个变量的数据和维度。

x1 = x[0]
y1 = y[0]
z1 = net.forward(x1)
print('x1 {}, shape {}'.format(x1, x1.shape))
print('y1 {}, shape {}'.format(y1, y1.shape))
print('z1 {}, shape {}'.format(z1, z1.shape))
x1 [0.         0.18       0.07344184 0.         0.31481481 0.57750527
 0.64160659 0.26920314 0.         0.22755741 0.28723404 1.
 0.08967991], shape (13,)
y1 [0.42222222], shape (1,)
z1 [130.86954441], shape (1,)

按上面的公式,当只有一个样本时,可以计算某个wjw_jwj,比如w0w_0w0的梯度。

gradient_w0 = (z1 - y1) * x1[0]
print('gradient_w0 {}'.format(gradient_w0))
gradient_w0 [0.]

同样我们可以计算w1w_1w1的梯度。

gradient_w1 = (z1 - y1) * x1[1]
print('gradient_w1 {}'.format(gradient_w1))
gradient_w1 [23.48051799]

依次计算w2w_2w2的梯度。

gradient_w2= (z1 - y1) * x1[2]
print('gradient_w1 {}'.format(gradient_w2))
gradient_w1 [9.58029163]

聪明的读者可能已经想到,写一个for循环即可计算从w0w_0w0w12w_{12}w12的所有权重的梯度,该方法读者可以自行实现。

使用Numpy进行梯度计算

基于Numpy广播机制(对向量和矩阵计算如同对1个单一变量计算一样),可以更快速的实现梯度计算。计算梯度的代码中直接用(z1−y1)⋅x1(z_1 - y_1) \cdot x_1(z1y1)x1,得到的是一个13维的向量,每个分量分别代表该维度的梯度。

gradient_w = (z1 - y1) * x1
print('gradient_w_by_sample1 {}, gradient.shape {}'.format(gradient_w, gradient_w.shape))
gradient_w_by_sample1 [  0.          23.48051799   9.58029163   0.          41.06674958
  75.33401592  83.69586171  35.11682862   0.          29.68425495
  37.46891169 130.44732219  11.69850434], gradient.shape (13,)

输入数据中有多个样本,每个样本都对梯度有贡献。如上代码计算了只有样本1时的梯度值,同样的计算方法也可以计算样本2和样本3对梯度的贡献。

x2 = x[1]
y2 = y[1]
z2 = net.forward(x2)
gradient_w = (z2 - y2) * x2
print('gradient_w_by_sample2 {}, gradient.shape {}'.format(gradient_w, gradient_w.shape))
gradient_w_by_sample2 [2.54738434e-02 0.00000000e+00 2.83333765e+01 0.00000000e+00
 1.86624242e+01 5.91703008e+01 8.45121992e+01 3.76793284e+01
 4.69458498e+00 1.23980167e+01 5.97311025e+01 1.07975454e+02
 2.20777626e+01], gradient.shape (13,)
x3 = x[2]
y3 = y[2]
z3 = net.forward(x3)
gradient_w = (z3 - y3) * x3
print('gradient_w_by_sample3 {}, gradient.shape {}'.format(gradient_w, gradient_w.shape))
gradient_w_by_sample3 [3.07963708e-02 0.00000000e+00 3.42860463e+01 0.00000000e+00
 2.25832858e+01 9.07287666e+01 7.83155260e+01 4.55955257e+01
 5.68088867e+00 1.50027645e+01 7.22802431e+01 1.29029688e+02
 8.29246719e+00], gradient.shape (13,)

可能有的读者再次想到可以使用for循环把每个样本对梯度的贡献都计算出来,然后再作平均。但是我们不需要这么做,仍然可以使用Numpy的矩阵操作来简化运算,如3个样本的情况。

# 注意这里是一次取出3个样本的数据,不是取出第3个样本
x3samples = x[0:3]
y3samples = y[0:3]
z3samples = net.forward(x3samples)

print('x {}, shape {}'.format(x3samples, x3samples.shape))
print('y {}, shape {}'.format(y3samples, y3samples.shape))
print('z {}, shape {}'.format(z3samples, z3samples.shape))
x [[0.00000000e+00 1.80000000e-01 7.34418420e-02 0.00000000e+00
  3.14814815e-01 5.77505269e-01 6.41606591e-01 2.69203139e-01
  0.00000000e+00 2.27557411e-01 2.87234043e-01 1.00000000e+00
  8.96799117e-02]
 [2.35922539e-04 0.00000000e+00 2.62405717e-01 0.00000000e+00
  1.72839506e-01 5.47997701e-01 7.82698249e-01 3.48961980e-01
  4.34782609e-02 1.14822547e-01 5.53191489e-01 1.00000000e+00
  2.04470199e-01]
 [2.35697744e-04 0.00000000e+00 2.62405717e-01 0.00000000e+00
  1.72839506e-01 6.94385898e-01 5.99382080e-01 3.48961980e-01
  4.34782609e-02 1.14822547e-01 5.53191489e-01 9.87519166e-01
  6.34657837e-02]], shape (3, 13)
y [[0.42222222]
 [0.36888889]
 [0.66      ]], shape (3, 1)
z [[130.86954441]
 [108.34434338]
 [131.3204395 ]], shape (3, 1)

上面的x3samples, y3samples, z3samples的第一维大小均为3,表示有3个样本。下面计算这3个样本对梯度的贡献。

gradient_w = (z3samples - y3samples) * x3samples
print('gradient_w {}, gradient.shape {}'.format(gradient_w, gradient_w.shape))
gradient_w [[0.00000000e+00 2.34805180e+01 9.58029163e+00 0.00000000e+00
  4.10667496e+01 7.53340159e+01 8.36958617e+01 3.51168286e+01
  0.00000000e+00 2.96842549e+01 3.74689117e+01 1.30447322e+02
  1.16985043e+01]
 [2.54738434e-02 0.00000000e+00 2.83333765e+01 0.00000000e+00
  1.86624242e+01 5.91703008e+01 8.45121992e+01 3.76793284e+01
  4.69458498e+00 1.23980167e+01 5.97311025e+01 1.07975454e+02
  2.20777626e+01]
 [3.07963708e-02 0.00000000e+00 3.42860463e+01 0.00000000e+00
  2.25832858e+01 9.07287666e+01 7.83155260e+01 4.55955257e+01
  5.68088867e+00 1.50027645e+01 7.22802431e+01 1.29029688e+02
  8.29246719e+00]], gradient.shape (3, 13)

此处可见,计算梯度gradient_w的维度是3×133 \times 133×13,并且其第1行与上面第1个样本计算的梯度gradient_w_by_sample1一致,第2行与上面第2个样本计算的梯度gradient_w_by_sample2一致,第3行与上面第3个样本计算的梯度gradient_w_by_sample3一致。这里使用矩阵操作,可以更加方便的对3个样本分别计算各自对梯度的贡献。

那么对于有N个样本的情形,我们可以直接使用如下方式计算出所有样本对梯度的贡献,这就是使用Numpy库广播功能带来的便捷。 小结一下这里使用Numpy库的广播功能:

  • 一方面可以扩展参数的维度,代替for循环来计算1个样本对从w0w_0w0w12w_12w12的所有参数的梯度。
  • 另一方面可以扩展样本的维度,代替for循环来计算样本0到样本403对参数的梯度。
z = net.forward(x)
gradient_w = (z - y) * x
print('gradient_w shape {}'.format(gradient_w.shape))
print(gradient_w)
gradient_w shape (404, 13)
[[0.00000000e+00 2.34805180e+01 9.58029163e+00 ... 3.74689117e+01
  1.30447322e+02 1.16985043e+01]
 [2.54738434e-02 0.00000000e+00 2.83333765e+01 ... 5.97311025e+01
  1.07975454e+02 2.20777626e+01]
 [3.07963708e-02 0.00000000e+00 3.42860463e+01 ... 7.22802431e+01
  1.29029688e+02 8.29246719e+00]
 ...
 [3.97706874e+01 0.00000000e+00 1.74130673e+02 ... 2.01043762e+02
  2.48659390e+02 1.27554582e+02]
 [2.69696515e+01 0.00000000e+00 1.75225687e+02 ... 2.02308019e+02
  2.34270491e+02 1.28287658e+02]
 [6.08972123e+01 0.00000000e+00 1.53017134e+02 ... 1.76666981e+02
  2.18509161e+02 1.08772220e+02]]

上面gradient_w的每一行代表了一个样本对梯度的贡献。根据梯度的计算公式,总梯度是对每个样本对梯度贡献的平均值。

∂L∂wj=1N∑i=1N(zi−yi)∂zi∂wj=1N∑i=1N(zi−yi)xij\frac{\partial{L}}{\partial{w_j}} = \frac{1}{N}\sum_{i=1}^N{(z_i - y_i)\frac{\partial{z_i}}{\partial{w_j}}} = \frac{1}{N}\sum_{i=1}^N{(z_i - y_i)x_i^{j}}wjL=N1i=1N(ziyi)wjzi=N1i=1N(ziyi)xij

我们也可以使用Numpy的均值函数来完成此过程:

# axis = 0 表示把每一行做相加然后再除以总的行数
gradient_w = np.mean(gradient_w, axis=0)
print('gradient_w ', gradient_w.shape)
print('w ', net.w.shape)
print(gradient_w)
print(net.w)
gradient_w  (13,)
w  (13, 1)
[  4.6555403   19.35268996  55.88081118  14.00266972  47.98588869
  76.87210821  94.8555119   36.07579608  45.44575958  59.65733292
  83.65114918 134.80387478  38.93998153]
[[ 1.76405235e+00]
 [ 4.00157208e-01]
 [ 9.78737984e-01]
 [ 2.24089320e+00]
 [ 1.86755799e+00]
 [ 1.59000000e+02]
 [ 9.50088418e-01]
 [-1.51357208e-01]
 [-1.03218852e-01]
 [ 1.59000000e+02]
 [ 1.44043571e-01]
 [ 1.45427351e+00]
 [ 7.61037725e-01]]

我们使用Numpy的矩阵操作方便地完成了gradient的计算,但引入了一个问题,gradient_w的形状是(13,),而www的维度是(13, 1)。导致该问题的原因是使用np.mean函数时消除了第0维。为了加减乘除等计算方便,gradient_wwww必须保持一致的形状。因此我们将gradient_w的维度也设置为(13,1),代码如下:

gradient_w = gradient_w[:, np.newaxis]
print('gradient_w shape', gradient_w.shape)
gradient_w shape (13, 1)

综合上面的剖析,计算梯度的代码如下所示。

z = net.forward(x)
gradient_w = (z - y) * x
gradient_w = np.mean(gradient_w, axis=0)
gradient_w = gradient_w[:, np.newaxis]
gradient_w
array([[ 4.6555403 ], [ 19.35268996], [ 55.88081118], [ 14.00266972], [ 47.98588869], [ 76.87210821], [ 94.8555119 ], [ 36.07579608], [ 45.44575958], [ 59.65733292], [ 83.65114918], [134.80387478], [ 38.93998153]])

上述代码非常简洁地完成了www的梯度计算。同样,计算bbb的梯度的代码也是类似的原理。

gradient_b = (z - y)
gradient_b = np.mean(gradient_b)
# 此处b是一个数值,所以可以直接用np.mean得到一个标量
gradient_b
142.50289323156107

将上面计算www和bbb的梯度的过程,写成Network类的gradient函数,实现方法如下所示。

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x
        gradient_w = np.mean(gradient_w, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)
        
        return gradient_w, gradient_b
# 调用上面定义的gradient函数,计算梯度
# 初始化网络
net = Network(13)
# 设置[w5, w9] = [-100., -100.]
net.w[5] = -100.0
net.w[9] = -100.0

z = net.forward(x)
loss = net.loss(z, y)
gradient_w, gradient_b = net.gradient(x, y)
gradient_w5 = gradient_w[5][0]
gradient_w9 = gradient_w[9][0]
print('point {}, loss {}'.format([net.w[5][0], net.w[9][0]], loss))
print('gradient {}'.format([gradient_w5, gradient_w9]))
point [-100.0, -100.0], loss 7873.345739941161
gradient [-45.87968288123223, -35.50236884482904]

确定损失函数更小的点

下面我们开始研究更新梯度的方法。首先沿着梯度的反方向移动一小步,找到下一个点P1,观察损失函数的变化。

# 在[w5, w9]平面上,沿着梯度的反方向移动到下一个点P1
# 定义移动步长 eta
eta = 0.1
# 更新参数w5和w9
net.w[5] = net.w[5] - eta * gradient_w5
net.w[9] = net.w[9] - eta * gradient_w9
# 重新计算z和loss
z = net.forward(x)
loss = net.loss(z, y)
gradient_w, gradient_b = net.gradient(x, y)
gradient_w5 = gradient_w[5][0]
gradient_w9 = gradient_w[9][0]
print('point {}, loss {}'.format([net.w[5][0], net.w[9][0]], loss))
print('gradient {}'.format([gradient_w5, gradient_w9]))
point [-95.41203171187678, -96.4497631155171], loss 7214.694816482369
gradient [-43.883932999069096, -34.019273908495926]

运行上面的代码,可以发现沿着梯度反方向走一小步,下一个点的损失函数的确减少了。感兴趣的话,大家可以尝试不停的点击上面的代码块,观察损失函数是否一直在变小。

在上述代码中,每次更新参数使用的语句: net.w[5] = net.w[5] - eta * gradient_w5

  • 相减:参数需要向梯度的反方向移动。
  • eta:控制每次参数值沿着梯度反方向变动的大小,即每次移动的步长,又称为学习率。

大家可以思考下,为什么之前我们要做输入特征的归一化,保持尺度一致?这是为了让统一的步长更加合适。

如 图8 所示,特征输入归一化后,不同参数输出的Loss是一个比较规整的曲线,学习率可以设置成统一的值 ;特征输入未归一化时,不同特征对应的参数所需的步长不一致,尺度较大的参数需要大步长,尺寸较小的参数需要小步长,导致无法设置统一的学习率。


图8:未归一化的特征,会导致不同特征维度的理想步长不同


代码封装Train函数

将上面的循环计算过程封装在trainupdate函数中,实现方法如下所示。

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights,1)
        self.w[5] = -100.
        self.w[9] = -100.
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x
        gradient_w = np.mean(gradient_w, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)        
        return gradient_w, gradient_b
    
    def update(self, gradient_w5, gradient_w9, eta=0.01):
        net.w[5] = net.w[5] - eta * gradient_w5
        net.w[9] = net.w[9] - eta * gradient_w9
        
    def train(self, x, y, iterations=100, eta=0.01):
        points = []
        losses = []
        for i in range(iterations):
            points.append([net.w[5][0], net.w[9][0]])
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            gradient_w5 = gradient_w[5][0]
            gradient_w9 = gradient_w[9][0]
            self.update(gradient_w5, gradient_w9, eta)
            losses.append(L)
            if i % 50 == 0:
                print('iter {}, point {}, loss {}'.format(i, [net.w[5][0], net.w[9][0]], L))
        return points, losses

# 获取数据
train_data, test_data = load_data()
x = train_data[:, :-1]
y = train_data[:, -1:]
# 创建网络
net = Network(13)
num_iterations=2000
# 启动训练
points, losses = net.train(x, y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()
iter 0, point [-99.54120317118768, -99.64497631155172], loss 7873.345739941161
iter 50, point [-78.9761810944732, -83.65939206734069], loss 5131.480704109405
iter 100, point [-62.4493631356931, -70.67918223434114], loss 3346.754494352463
iter 150, point [-49.17799206644332, -60.12620415441553], loss 2184.906016270654
iter 200, point [-38.53070194231174, -51.533984751788346], loss 1428.4172504483342
iter 250, point [-29.998249130283174, -44.52613603923428], loss 935.7392894242679
iter 300, point [-23.169901624519575, -38.79894318028118], loss 614.7592258739251
iter 350, point [-17.71439280083778, -34.10731848231335], loss 405.53408184471505
iter 400, point [-13.364557220746388, -30.253470630210863], loss 269.0551396220099
iter 450, point [-9.904936677384967, -27.077764259976597], loss 179.9364750604248
iter 500, point [-7.161782280775628, -24.451346444229817], loss 121.65711285489998
iter 550, point [-4.994989383373879, -22.270198517465555], loss 83.46491706360901
iter 600, point [-3.2915916915280783, -20.450337700789422], loss 58.36183370758033
iter 650, point [-1.9605131425212885, -18.923946252536773], loss 41.792808952534
iter 700, point [-0.9283343968114077, -17.636248840494844], loss 30.792614998570482
iter 750, point [-0.13587780041668718, -16.542993494033716], loss 23.43065354742935
iter 800, point [0.4645474092373408, -15.60841945615185], loss 18.449664464381506
iter 850, point [0.9113672926170796, -14.803617811655524], loss 15.030615923519784
iter 900, point [1.2355357562745004, -14.105208963393421], loss 12.639705730905764
iter 950, point [1.4619805189121953, -13.494275706622066], loss 10.928795653764196
iter 1000, point [1.6107694974712377, -12.955502492189021], loss 9.670616807081698
iter 1050, point [1.6980516626374353, -12.476481020835202], loss 8.716602071285436
iter 1100, point [1.7368159644039771, -12.04715001603925], loss 7.969442965176621
iter 1150, point [1.7375034995020395, -11.659343238414994], loss 7.365228465612388
iter 1200, point [1.7085012931271857, -11.306424818680442], loss 6.861819342703047
iter 1250, point [1.6565405824483015, -10.982995030930885], loss 6.431280353078019
iter 1300, point [1.5870180647823104, -10.684652890749808], loss 6.054953198278096
iter 1350, point [1.5042550040699705, -10.407804594738165], loss 5.720248083137862
iter 1400, point [1.4117062100403601, -10.14950894127009], loss 5.418553777303124
iter 1450, point [1.3121285818148223, -9.907352585055445], loss 5.143875665274019
iter 1500, point [1.2077170340724794, -9.67934935975478], loss 4.891947653805328
iter 1550, point [1.1002141124777076, -9.463859017459276], loss 4.659652555766873
iter 1600, point [0.990998385834045, -9.259521632951046], loss 4.444643323159747
iter 1650, point [0.8811557188942747, -9.065204645952335], loss 4.245095084874306
iter 1700, point [0.7715367363576023, -8.87996009965401], loss 4.059542401818773
iter 1750, point [0.662803148565214, -8.702990105791185], loss 3.88677206759292
iter 1800, point [0.5554650931141796, -8.533618947271485], loss 3.7257521401326525
iter 1850, point [0.4499112301277286, -8.371270536496699], loss 3.5755846299900256
iter 1900, point [0.3464329929523944, -8.215450195281456], loss 3.4354736574042524
iter 1950, point [0.24524412503452966, -8.065729922139326], loss 3.3047037451160453
<Figure size 432x288 with 1 Axes>

训练扩展到全部参数

为了能给读者直观的感受,上面演示的梯度下降的过程仅包含w5w_5w5w9w_9w9两个参数,但房价预测的完整模型,必须要对所有参数www和bbb进行求解。这需要将Network中的updatetrain函数进行修改。由于不再限定参与计算的参数(所有参数均参与计算),修改之后的代码反而更加简洁。实现逻辑:“前向计算输出、根据输出和真实值计算Loss、基于Loss和输入计算梯度、根据梯度更新参数值”四个部分反复执行,直到到损失函数最小。具体代码如下所示。

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x
        gradient_w = np.mean(gradient_w, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)        
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
        
    def train(self, x, y, iterations=100, eta=0.01):
        losses = []
        for i in range(iterations):
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            self.update(gradient_w, gradient_b, eta)
            losses.append(L)
            if (i+1) % 10 == 0:
                print('iter {}, loss {}'.format(i, L))
        return losses

# 获取数据
train_data, test_data = load_data()
x = train_data[:, :-1]
y = train_data[:, -1:]
# 创建网络
net = Network(13)
num_iterations=1000
# 启动训练
losses = net.train(x,y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()
iter 9, loss 5.143394325795511
iter 19, loss 3.097924194225988
iter 29, loss 2.082241020617026
iter 39, loss 1.5673801618157397
iter 49, loss 1.2966204735077431
iter 59, loss 1.1453399043319765
iter 69, loss 1.0530155717435201
iter 79, loss 0.9902292156463155
iter 89, loss 0.9426576903842504
iter 99, loss 0.9033048096880774
iter 109, loss 0.868732003041364
iter 119, loss 0.837229250968144
iter 129, loss 0.807927474161227
iter 139, loss 0.7803677341465797
iter 149, loss 0.7542920908532763
iter 159, loss 0.7295420168915829
iter 169, loss 0.7060090054240882
iter 179, loss 0.6836105084697767
iter 189, loss 0.6622781710179412
iter 199, loss 0.6419520361168637
iter 209, loss 0.622577651786949
iter 219, loss 0.6041045903195837
iter 229, loss 0.5864856570315078
iter 239, loss 0.5696764374763879
iter 249, loss 0.5536350125932015
iter 259, loss 0.5383217588525027
iter 269, loss 0.5236991929680567
iter 279, loss 0.509731841376165
iter 289, loss 0.4963861247069634
iter 299, loss 0.48363025234390233
iter 309, loss 0.47143412454019784
iter 319, loss 0.45976924072044867
iter 329, loss 0.44860861316590983
iter 339, loss 0.4379266855659793
iter 349, loss 0.4276992560632111
iter 359, loss 0.4179034044959738
iter 369, loss 0.4085174235863553
iter 379, loss 0.39952075384787633
iter 389, loss 0.39089392200622347
iter 399, loss 0.382618482740513
iter 409, loss 0.3746769635645124
iter 419, loss 0.36705281267772816
iter 429, loss 0.35973034962581096
iter 439, loss 0.35269471861856694
iter 449, loss 0.3459318443621334
iter 459, loss 0.33942839026966587
iter 469, loss 0.33317171892221653
iter 479, loss 0.3271498546584252
iter 489, loss 0.3213514481781961
iter 499, loss 0.31576574305173283
iter 509, loss 0.3103825440311682
iter 519, loss 0.30519218706757245
iter 529, loss 0.30018551094136725
iter 539, loss 0.29535383041913843
iter 549, loss 0.29068891085453674
iter 559, loss 0.28618294415539336
iter 569, loss 0.28182852604338504
iter 579, loss 0.27761863453655344
iter 589, loss 0.27354660958874766
iter 599, loss 0.2696061338236152
iter 609, loss 0.26579121430413205
iter 619, loss 0.26209616528184804
iter 629, loss 0.25851559187303397
iter 639, loss 0.25504437461176843
iter 649, loss 0.2516776548326958
iter 659, loss 0.2484108208387405
iter 669, loss 0.24523949481147198
iter 679, loss 0.24215952042409844
iter 689, loss 0.2391669511192288
iter 699, loss 0.2362580390155805
iter 709, loss 0.2334292244097483
iter 719, loss 0.2306771258409729
iter 729, loss 0.22799853068858245
iter 739, loss 0.22539038627340982
iter 749, loss 0.22284979143604464
iter 759, loss 0.22037398856623477
iter 769, loss 0.21796035605914357
iter 779, loss 0.2156064011754777
iter 789, loss 0.21330975328373866
iter 799, loss 0.2110681574640261
iter 809, loss 0.20887946845393043
iter 819, loss 0.20674164491810018
iter 829, loss 0.2046527440240648
iter 839, loss 0.20261091630783168
iter 849, loss 0.20061440081366638
iter 859, loss 0.1986615204933024
iter 869, loss 0.19675067785062839
iter 879, loss 0.19488035081864621
iter 889, loss 0.19304908885621125
iter 899, loss 0.1912555092527351
iter 909, loss 0.1894982936296714
iter 919, loss 0.18777618462820625
iter 929, loss 0.18608798277314595
iter 939, loss 0.18443254350353405
iter 949, loss 0.18280877436103968
iter 959, loss 0.18121563232764165
iter 969, loss 0.17965212130459232
iter 979, loss 0.1781172897250724
iter 989, loss 0.1766102282933619
iter 999, loss 0.17513006784373505

随机梯度下降法( Stochastic Gradient Descent)

在上述程序中,每次损失函数和梯度计算都是基于数据集中的全量数据。对于波士顿房价预测任务数据集而言,样本数比较少,只有404个。但在实际问题中,数据集往往非常大,如果每次都使用全量数据进行计算,效率非常低,通俗地说就是“杀鸡焉用牛刀”。由于参数每次只沿着梯度反方向更新一点点,因此方向并不需要那么精确。一个合理的解决方案是每次从总的数据集中随机抽取出小部分数据来代表整体,基于这部分数据计算梯度和损失来更新参数,这种方法被称作随机梯度下降法(Stochastic Gradient Descent,SGD),核心概念如下:

  • mini-batch:每次迭代时抽取出来的一批数据被称为一个mini-batch。
  • batch_size:一个mini-batch所包含的样本数目称为batch_size。
  • epoch:当程序迭代的时候,按mini-batch逐渐抽取出样本,当把整个数据集都遍历到了的时候,则完成了一轮训练,也叫一个epoch。启动训练时,可以将训练的轮数num_epochs和batch_size作为参数传入。

下面结合程序介绍具体的实现过程,涉及到数据处理和训练过程两部分代码的修改。

数据处理代码修改

数据处理需要实现拆分数据批次和样本乱序(为了实现随机抽样的效果)两个功能。

# 获取数据
train_data, test_data = load_data()
train_data.shape
(404, 14)

train_data中一共包含404条数据,如果batch_size=10,即取前0-9号样本作为第一个mini-batch,命名train_data1。

train_data1 = train_data[0:10]
train_data1.shape
(10, 14)

使用train_data1的数据(0-9号样本)计算梯度并更新网络参数。

net = Network(13)
x = train_data1[:, :-1]
y = train_data1[:, -1:]
loss = net.train(x, y, iterations=1, eta=0.01)
loss
[4.497480200683046]

再取出10-19号样本作为第二个mini-batch,计算梯度并更新网络参数。

train_data2 = train_data[10:20]
x = train_data2[:, :-1]
y = train_data2[:, -1:]
loss = net.train(x, y, iterations=1, eta=0.01)
loss
[5.849682302465982]

按此方法不断的取出新的mini-batch,并逐渐更新网络参数。

接下来,将train_data分成大小为batch_size的多个mini_batch,如下代码所示:将train_data分成 40410+1=41\frac{404}{10} + 1 = 4110404+1=41 个 mini_batch,其中前40个mini_batch,每个均含有10个样本,最后一个mini_batch只含有4个样本。

batch_size = 10
n = len(train_data)
mini_batches = [train_data[k:k+batch_size] for k in range(0, n, batch_size)]
print('total number of mini_batches is ', len(mini_batches))
print('first mini_batch shape ', mini_batches[0].shape)
print('last mini_batch shape ', mini_batches[-1].shape)
total number of mini_batches is  41
first mini_batch shape  (10, 14)
last mini_batch shape  (4, 14)

另外,这里是按顺序读取mini_batch,而SGD里面是随机抽取一部分样本代表总体。为了实现随机抽样的效果,我们先将train_data里面的样本顺序随机打乱,然后再抽取mini_batch。随机打乱样本顺序,需要用到np.random.shuffle函数,下面先介绍它的用法。


说明:

通过大量实验发现,模型对最后出现的数据印象更加深刻。训练数据导入后,越接近模型训练结束,最后几个批次数据对模型参数的影响越大。为了避免模型记忆影响训练效果,需要进行样本乱序操作。


# 新建一个array
a = np.array([1,2,3,4,5,6,7,8,9,10,11,12])
print('before shuffle', a)
np.random.shuffle(a)
print('after shuffle', a)
before shuffle [ 1  2  3  4  5  6  7  8  9 10 11 12]
after shuffle [ 7  2 11  3  8  6 12  1  4  5 10  9]

多次运行上面的代码,可以发现每次执行shuffle函数后的数字顺序均不同。 上面举的是一个1维数组乱序的案例,我们再观察下2维数组乱序后的效果。

# 新建一个array
a = np.array([1,2,3,4,5,6,7,8,9,10,11,12])
a = a.reshape([6, 2])
print('before shuffle\n', a)
np.random.shuffle(a)
print('after shuffle\n', a)
before shuffle
 [[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]
 [11 12]]
after shuffle
 [[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 9 10]
 [11 12]
 [ 7  8]]

观察运行结果可发现,数组的元素在第0维被随机打乱,但第1维的顺序保持不变。例如数字2仍然紧挨在数字1的后面,数字8仍然紧挨在数字7的后面,而第二维的[3, 4]并不排在[1, 2]的后面。将这部分实现SGD算法的代码集成到Network类中的train函数中,最终的完整代码如下。

# 获取数据
train_data, test_data = load_data()

# 打乱样本顺序
np.random.shuffle(train_data)

# 将train_data分成多个mini_batch
batch_size = 10
n = len(train_data)
mini_batches = [train_data[k:k+batch_size] for k in range(0, n, batch_size)]

# 创建网络
net = Network(13)

# 依次使用每个mini_batch的数据
for mini_batch in mini_batches:
    x = mini_batch[:, :-1]
    y = mini_batch[:, -1:]
    loss = net.train(x, y, iterations=1)

训练过程代码修改

将每个随机抽取的mini-batch数据输入到模型中用于参数训练。训练过程的核心是两层循环:

  1. 第一层循环,代表样本集合要被训练遍历几次,称为“epoch”,代码如下:

for epoch_id in range(num_epochs):

  1. 第二层循环,代表每次遍历时,样本集合被拆分成的多个批次,需要全部执行训练,称为“iter (iteration)”,代码如下:

for iter_id,mini_batch in emumerate(mini_batches):

在两层循环的内部是经典的四步训练流程:前向计算->计算损失->计算梯度->更新参数,这与大家之前所学是一致的,代码如下:

            x = mini_batch[:, :-1]
            y = mini_batch[:, -1:]
            a = self.forward(x)  #前向计算
            loss = self.loss(a, y)  #计算损失
            gradient_w, gradient_b = self.gradient(x, y)  #计算梯度
            self.update(gradient_w, gradient_b, eta)  #更新参数

将两部分改写的代码集成到Network类中的train函数中,最终的实现如下。

import numpy as np

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        #np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        N = x.shape[0]
        gradient_w = 1. / N * np.sum((z-y) * x, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = 1. / N * np.sum(z-y)
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
            
                
    def train(self, training_data, num_epochs, batch_size=10, eta=0.01):
        n = len(training_data)
        losses = []
        for epoch_id in range(num_epochs):
            # 在每轮迭代开始之前,将训练数据的顺序随机打乱
            # 然后再按每次取batch_size条数据的方式取出
            np.random.shuffle(training_data)
            # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
            mini_batches = [training_data[k:k+batch_size] for k in range(0, n, batch_size)]
            for iter_id, mini_batch in enumerate(mini_batches):
                #print(self.w.shape)
                #print(self.b)
                x = mini_batch[:, :-1]
                y = mini_batch[:, -1:]
                a = self.forward(x)
                loss = self.loss(a, y)
                gradient_w, gradient_b = self.gradient(x, y)
                self.update(gradient_w, gradient_b, eta)
                losses.append(loss)
                print('Epoch {:3d} / iter {:3d}, loss = {:.4f}'.
                                 format(epoch_id, iter_id, loss))
        
        return losses

# 获取数据
train_data, test_data = load_data()

# 创建网络
net = Network(13)
# 启动训练
losses = net.train(train_data, num_epochs=50, batch_size=100, eta=0.1)

# 画出损失函数的变化趋势
plot_x = np.arange(len(losses))
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()
posted on 2021-04-14 23:38  哈利路亚#0207  阅读(76)  评论(0)    收藏  举报
Live2D