代码改变世界

LL(1)文法的判断,递归下降分析程序

2019-11-21 20:10  当地一个比较帅的人  阅读(230)  评论(0)    收藏  举报

1.文法 G(S):

(1)S -> AB

(2)A ->Da|ε

(3)B -> cC

(4)C -> aADC |ε

(5)D -> b|ε

验证文法 G(S)是不是 LL(1)文法.

A->Da

A->ε

C->aADC

C->ε

D->b

D->ε

FIRST集:

First(Da) = {b,a}

First(ε) = {ε}

First(aADC) = {a}

First(b) = {b}

FOLLOW集:

Follow(A) = {c,b,a,#}

Follow(C) = {#}

Follow(D) = {a,#}

SELECT集:

Select(A->Da) = {b,a}

Select(A->ε) = {c,b,a,#}

Select(C->aADC) ={a}

Select(C->ε) = {#}

Select(D->b) = {b}

Select(D->ε) = {a,#}

由此可得:Select(A->Da) ∩ Select(A->ε) ≠ ∅

                  Select(C->aADC) ∩ Select(C->ε) =∅

                  Select(D->b) ∩ Select(D->ε) =∅

因此由LL(1)文法定义得知该文法不是LL(1)文法。

 

2.法消除左递归之后的表达式文法是否是LL(1)文法?

消除左递归:

(1) E->TE'

     E'->+TE'|ε

(2) T->FT'

      T'->*FT'|ε

 (3) F->(E)|i

SELECT集:

Select(E->TE') = First(TE') = {(,i}

Select(E'->+TE') = First(+TE') = {+}

Select(E'->ε) = (First(ε) = {ε})∪Follow(E') = {),#}

Select(T->FT') = First(FT') = {(,i}

Select(T'->*FT') = First(+TE') = {*}

Select(T'->ε) = (First(ε) = {ε})∪Follow(T') = {+,),#}

Select( F->(E)) = First((E)) = {( }

Select( F->i) = First(i) = {i}

由此可得,Select(E'->+TE') ∩ Select(E'->ε) = ∅

                  Select(T'->*FT') ∩ Select(T'->ε) = ∅

                  Select( F->(E)) ∩ Select( F->i) = ∅

因此由LL(1)文法定义得知该文法是LL(1)文法。