回溯法之0/1背包问题
题目描述
已知一个载重为M的背包和n件物品,物品编号从0到n-1。第i件物品的重量为 wi,若将第i种物品装入背包将获益pi,这里,wi>0,pi>0,0<=i<n。所谓0/1背包问题是指在物品不能分割,只能整件装入背包或不装入的情况下,求一种最佳装载方案使得总收益最大。
注:
1、本题请用回溯法解决(要使用限界函数进行剪枝)。
2、所有测试数据均已按pi/wi降序排列。
输入
第 1 行中有 2 个正整数 n(n<=50)和M ,表示有 n件物品,背包载重为M(m<=100)。然后输入n个物品的重量,最后输入n个物品的收益值。
输出
最佳装载方案的总收益
c++代码如下:
#include<iostream>using namespace std;int n;int m;int x[100];int y[100];int fp=0;int Bound(int k,int cp,int cw,int *w,int *p){ int b=cp,c=cw; for(int i=k+1;i<n;i++) { c+=w[i]; if(c<m) b+=p[i]; else return (b+(1-(c-m)/w[i])*p[i]); } return b;}void BK(int k,int cp,int cw,int &fp,int *x,int *y,int *w,int *p){ int j; int bp; if(cw+w[k]<=m) { y[k]=1; if(k<n-1) BK(k+1,cp+p[k],cw+w[k],fp,x,y,w,p); if(cp+p[k]>fp&&k==n-1) { fp=cp+p[k]; for(j=0;j<=k;j++) x[j]=y[j]; } } if(Bound(k,cp,cw,w,p)>=fp) { y[k]=0; if(k<n-1) BK(k+1,cp,cw,fp,x,y,w,p); if(cp>fp&&k==n-1) { fp=cp; for(j=0;j<=k;j++) x[j]=y[j]; } }}int BK(int *x,int *w,int *p){ int y[100]={0}; int fp; BK(0,0,0,fp,x,y,w,p); return fp;}int main(){ int i; int w[100]; int p[100]; cin>>n>>m; for(i=0;i<n;i++) cin>>w[i]; for(i=0;i<n;i++) cin>>p[i]; cout<<BK(x,w,p); return 0;}结果:
浙公网安备 33010602011771号