File Input and Output using XML and YAML files
此为OpenCV官方教程的个人翻译
目标
您将找到以下问题的答案:
- 如何使用YAML或XML文件将文本条目打印和读取到文件和OpenCV中?
- 如何对OpenCV数据结构做同样的事情?
- 如何为您的数据结构执行此操作?
- 使用OpenCV数据结构,如FileStorage,FileNode或FileNodeIterator。
源码
你可以从这里下载它,或者在OpenCV源代码库中找到它。samples/cpp/tutorial_code/core/file_input_output/file_input_output.cpp
下面是如何实现目标列表中的所有内容的示例代码。
/*
* @LastEditors: 帝皇の惊
* @Date: 2022-06-28 16:31:54
* @Description: 使用XAML与YAML操作文件
* @LastEditTime: 2022-06-28 17:12:21
*/
#include "opencv2/core/core.hpp"
#include <iostream>
#include <string>
using namespace std;
using namespace cv;
class MyData
{
public:
MyData() : A(0), X(0), id() {}
explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") {}
void write(FileStorage &fs) const
{
fs << "{"
<< "A" << A << "X" << X << "id" << id
<< "}";
}
void read(const FileNode &node)
{
A = (int)node["A"];
X = (double)node["X"];
id = (string)node["id"];
}
public:
int A;
double X;
string id;
};
// These write and read functions must be defined for the serialization(序列化) in FileStorge to work
static void write(FileStorage &fs, const std::string &, const MyData &x)
{
x.write(fs);
}
static void read(const FileNode &node, MyData &x, const MyData &default_value = MyData())
{
if (node.empty()) {
x = default_value;
} else {
x.read(node);
}
}
// This function will print our custom class to the console
static ostream &operator<<(ostream &out, const MyData &m)
{
out << "{ id = " << m.id << ", ";
out << "X = " << m.X << ", ";
out << "A = " << m.A << "}";
return out;
}
int main()
{
string filename = "test.json";
// write
{
Mat R = Mat_<uchar>::eye(3, 3),
T = Mat_<double>::zeros(3, 1);
MyData m(1);
FileStorage fs(filename, FileStorage::WRITE);
fs << "iterationNr" << 100;
fs << "strings"
<< "["; // text -string sequence
fs << "image1.jpg"
<< "Awesomeness"
<< "baboon.jpg";
fs << "]"; // close sequence
fs << "Mapping";
fs << "{"
<< "One" << 1;
fs << "two" << 2 << "}";
fs << "R" << R; // cv::Mat
fs << "T" << T;
fs << "MyData" << m; // your own data structures
fs.release(); // explicit close
cout << "Write Done" << endl;
}
// read
{
cout << endl
<< "Reading:" << endl;
FileStorage fs;
fs.open(filename, FileStorage::READ);
int itNr;
// fs["iterationNr"] >> itNr
itNr = (int)fs["iterationNr"];
cout << itNr;
if (!fs.isOpened()) {
cerr << "Failed to open " << filename << endl;
return 1;
}
FileNode n = fs["strings"];
if (n.type() != FileNode::SEQ) {
cerr << "strings is not a sequence! FAIL" << endl;
return 1;
}
FileNodeIterator it = n.begin(), it_end = n.end();
for (; it != it_end; ++it) {
cout << (string)*it << endl;
}
n = fs["Mapping"];
cout << "Two" << (int)n["Two"] << ",";
cout << "One" << (int)n["One"] << endl
<< endl;
MyData m;
Mat R, T;
fs["R"] >> R;
fs["T"] >> T;
fs["MyData"] >> m;
cout << endl
<< "R = " << R << endl;
cout << "T = " << T << endl;
cout << "MyData = " << endl
<< m << endl
<< endl;
// show default behavior for non existing nodes
cout << "Attempt to read NonExisting(should initialize the data structure with its default)";
fs["NonExisting"] >> m;
cout << endl
<< "NonExisting" << endl
<< m << endl;
cout << endl
<< "Tip: Open up " << filename << " with a text editor to see the serialized data." << endl;
return 0;
}
}
解释
这里我们只讨论 XML 和 YAML 文件输入。您的输出(及其各自的输入)文件可能只有这些扩展名之一以及来自此扩展名的结构。它们是您可以序列化的两种数据结构:映射(或者说dict)(如 STL 中的Map)和元素序列(如 STL vector)。它们之间的区别在于,在Map中,每个元素都有一个唯一的名称,通过您可以访问它。对于序列,您需要遍历它们以查询特定项目。
-
XML/YAML 文件打开和关闭。在将任何内容写入此类文件之前,您需要打开它,并在最后将其关闭。OpenCV 中的 XML/YAML 数据结构是 FileStorage。要用该结构读取文件,您可以使用其构造函数或以下函数的 open() 函数:
string filename = "I.xml"; FileStorage fs(filename, FileStorage::WRITE); //... fs.open(filename, FileStorage::READ);第二个参数中的任何一个参数都是一个常量,指定您将能够对它们执行的操作类型:WRITE,READ或UPPER。文件名中指定的扩展名还决定了将使用的输出格式。如果指定扩展名(如 .xml.gz),甚至可以压缩输出。
当FileStorge对象被销毁时,该文件会自动关闭。但是,您可以使用 release 函数显式调用此函数:
fs.release(); // explicit close -
文本和数字的输入和输出。该数据结构使用与 STL 库相同的<<输出运算符。要输出任何类型的数据结构,我们首先需要指定其名称。我们通过简单地打印出这个名字来做到这一点。对于基本类型,您可以按照以下方式打印值:
fs << "iterationNr" << 100;读取操作是一个简单的寻址(通过 [] 运算符)和转换操作,或通过 >> 运算符读取:
int itNr; fs["iterationNr"] >> itNr; itNr = (int) fs["iterationNr"]; -
OpenCV数据结构的输入/输出。好吧,这些行为与基本C++类型完全相同:
Mat R = Mat_<uchar >::eye (3, 3), T = Mat_<double>::zeros(3, 1); fs << "R" << R; // Write cv::Mat fs << "T" << T; fs["R"] >> R; // Read cv::Mat fs["T"] >> T; -
向量(数组)和关联映射的输入/输出。正如我之前提到的,我们也可以输出映射和序列(数组,向量)。同样,我们首先打印变量的名称,然后我们必须指定输出是序列还是映射。
对于第一个元素之前的序列,打印“[”字符,在最后一个元素之后打印“]”字符:
fs << "strings" << "["; // text - string sequence fs << "image1.jpg" << "Awesomeness" << "baboon.jpg"; fs << "]"; // close sequence对于Map,需求是相同的,但现在我们使用“{”和“}”分隔符:
fs << "Mapping"; // text - mapping fs << "{" << "One" << 1; fs << "Two" << 2 << "}";为了从中读取,我们使用FileNode和FileNodeIterator数据结构。FileStorge的 [] 运算符返回 FileNode 数据类型。如果节点是连续存储的,我们可以使用FileNodeIterator来循环访问这些项目:
FileNode n = fs["strings"]; // Read string sequence - Get node if (n.type() != FileNode::SEQ) { cerr << "strings is not a sequence! FAIL" << endl; return 1; } FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node for (; it != it_end; ++it) cout << (string)*it << endl;对于Map,您可以再次使用 [] 运算符来访问给定的项目(或>>运算符):
n = fs["Mapping"]; // Read mappings from a sequence cout << "Two " << (int)(n["Two"]) << "; "; cout << "One " << (int)(n["One"]) << endl << endl; -
读取和写入您自己的数据结构。假设您有一个数据结构,例如:
class MyData { public: MyData() : A(0), X(0), id() {} public: // Data Members int A; double X; string id; };可以通过 OpenCV I/O XML/YAML 接口(就像在 OpenCV 数据结构中一样)通过在类内部和外部添加读取和写入函数来序列化它。对于内部部分:
void write(FileStorage& fs) const //Write serialization for this class { fs << "{" << "A" << A << "X" << X << "id" << id << "}"; } void read(const FileNode& node) //Read serialization for this class { A = (int)node["A"]; X = (double)node["X"]; id = (string)node["id"]; }然后,您需要在类外部添加以下函数定义:
void write(FileStorage& fs, const std::string&, const MyData& x) { x.write(fs); } void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()) { if(node.empty()) x = default_value; else x.read(node); }在这里,您可以观察到,在读取部分中,我们定义了如果用户尝试读取不存在的节点会发生什么情况。在这种情况下,我们只返回默认的初始化值,但是更详细的解决方案是,例如返回对象ID的减一后值。
添加这四个函数后,使用 >> 运算符进行写入,使用 << 运算符进行读取:
MyData m(1); fs << "MyData" << m; // your own data structures fs["MyData"] >> m; // Read your own structure_或者要尝试读取不存在的数值:
fs["NonExisting"] >> m; // Do not add a fs << "NonExisting" << m command for this to work cout << endl << "NonExisting = " << endl << m << endl;
结果
好吧,大多数情况下,我们只是打印出定义的数字。在控制台的屏幕上,您可以看到:
Write Done.
Reading:
100image1.jpg
Awesomeness
baboon.jpg
Two 2; One 1
R = [1, 0, 0;
0, 1, 0;
0, 0, 1]
T = [0; 0; 0]
MyData =
{ id = mydata1234, X = 3.14159, A = 97}
Attempt to read NonExisting (should initialize the data structure with its default).
NonExisting =
{ id = , X = 0, A = 0}
Tip: Open up output.xml with a text editor to see the serialized data.
尽管如此,您可能会在输出xml文件中看到的内容更有趣:
<?xml version="1.0"?>
<opencv_storage>
<iterationNr>100</iterationNr>
<strings>
image1.jpg Awesomeness baboon.jpg</strings>
<Mapping>
<One>1</One>
<Two>2</Two></Mapping>
<R type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>u</dt>
<data>
1 0 0 0 1 0 0 0 1</data></R>
<T type_id="opencv-matrix">
<rows>3</rows>
<cols>1</cols>
<dt>d</dt>
<data>
0. 0. 0.</data></T>
<MyData>
<A>97</A>
<X>3.1415926535897931e+000</X>
<id>mydata1234</id></MyData>
</opencv_storage>
或 YAML 文件:
%YAML:1.0
iterationNr: 100
strings:
- "image1.jpg"
- Awesomeness
- "baboon.jpg"
Mapping:
One: 1
Two: 2
R: !!opencv-matrix
rows: 3
cols: 3
dt: u
data: [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]
T: !!opencv-matrix
rows: 3
cols: 1
dt: d
data: [ 0., 0., 0. ]
MyData:
A: 97
X: 3.1415926535897931e+000
id: mydata1234
其实FileStorge的写入还可以使用json文件,它看起来长这样
{
"iterationNr": 100,
"strings": [
"image1.jpg",
"Awesomeness",
"baboon.jpg"
],
"Mapping": {
"One": 1,
"two": 2
},
"R": {
"type_id": "opencv-matrix",
"rows": 3,
"cols": 3,
"dt": "u",
"data": [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]
},
"T": {
"type_id": "opencv-matrix",
"rows": 3,
"cols": 1,
"dt": "d",
"data": [ 0.0, 0.0, 0.0 ]
},
"MyData": {
"A": 97,
"X": 3.1415926535897931e+00,
"id": "mydata1234"
}
}

浙公网安备 33010602011771号