摘要:$$\Large\displaystyle \int_0^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x$$ $\Large\mathbf{Solution:}$ Let $J$ donates the integral and it is easy
阅读全文
摘要:$$\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}$$ $\Large\mathbf{Solution:}$ Let $S$ denote the sum. Then $$\begin{align } S=\sum_{n=1
阅读全文
摘要:$$\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}$$ where $\widetilde{H_n}$ is the alternating harmonic number. $\Large\mathbf{S
阅读全文
摘要:Since the Clausen functions are intimately related to a number of other important special functions, such as Inverse Tangent Integrals, Polylogarithms
阅读全文
摘要:$$\Large\displaystyle \int_0^{1} \frac{\arccos^4 \left(x^2\right)}{\sqrt{1 x^2}}\,\mathrm{d}x$$ $\Large\mathbf{Solution:}$ Let $I$ denote the integral
阅读全文
摘要:$$\Large\displaystyle \int_0^1\frac{\ln^3(1+x)\,\ln^3x}x\mathrm{d}x$$ $\Large\mathbf{Solution:}$ Using the following known results: $$\begin{align } \
阅读全文
摘要:$$\Large\displaystyle \int_0^1\frac{\ln^3(1+x)\,\ln^2x}x\mathrm{d}x$$ $\Large\mathbf{Solution:}$ I will be using the following results: $$2\sum^\infty
阅读全文
摘要:$$\Large\displaystyle \sum_{n=1}^\infty\frac{\Gamma\left(n+\dfrac{1}{2}\right)}{(2n+1)^4\,4^n\,n!}$$ $\Large\mathbf{Solution:}$ First, in view of Legr
阅读全文
摘要:$$\Large\displaystyle \sum_{n=0}^\infty \frac{1}{F_{2n+1}+1}=\frac{\sqrt5}{2}$$ $\Large\mathbf{Proof:}$ Let $\phi=\dfrac{1+\sqrt{5}}{2}$ denote the go
阅读全文