05 2016 档案

摘要:原文地址:http://spaces.ac.cn/archives/3154/ 原文作者:苏剑林 标准思路 简单来说,$n$维球体积就是如下$n$重积分 $$V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}\mathrm{d}x_1 \mathrm{d}x_ 阅读全文
posted @ 2016-05-27 09:09 Renascence_5 阅读(4260) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int^{\infty}_{0}\frac{\tanh\left(\, x\,\right)} {x\left[\, 1 2\cosh\left(\, 2x\,\right)\,\right]^{2}}\,{\rm d}x$$ $\Large\mathb 阅读全文
posted @ 2016-05-15 21:06 Renascence_5 阅读(2240) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^\infty{_3F_2}\left(\begin{array}c\dfrac58,\dfrac58,\dfrac98\\\dfrac12,\dfrac{{13}}8\end{array}\middle|\ { x}\right)^2\fra 阅读全文
posted @ 2016-05-15 20:51 Renascence_5 阅读(896) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^\infty\frac{\ln\left(1+x+\sqrt{x^2+2\,x}\right)\,\ln\left(1+\sqrt{x^2+2\,x+2}\right)}{x^2+2x+1}\mathrm dx$$ $\Large\mathb 阅读全文
posted @ 2016-05-14 21:52 Renascence_5 阅读(975) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle\int_0^\infty\frac{\ln\left(\displaystyle\frac{1+x^{4+\sqrt{15\vphantom{\large A}}}}{1+x^{2+\sqrt{3\vphantom{\large A}}}}\right)} 阅读全文
posted @ 2016-05-14 21:43 Renascence_5 阅读(1298) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^1\frac{\ln x\ln^2(1+x)}{x}\ \mathrm dx$$ $\Large\mathbf{Solution:}$ $$\begin{align } \int_0^1\frac{\ln x\ln^2(1+x)}{x}\ \ 阅读全文
posted @ 2016-05-14 20:44 Renascence_5 阅读(1706) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x$$ $\Large\mathbf{Solution:}$ Let $J$ donates the integral and it is easy 阅读全文
posted @ 2016-05-13 10:58 Renascence_5 阅读(607) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x$$ $\Large\mathbf{Solution:}$ Tools 阅读全文
posted @ 2016-05-13 10:48 Renascence_5 阅读(625) 评论(0) 推荐(0)
摘要:链接:http://pan.baidu.com/s/1eSNkz4Y window._bd_share_config={"common":{"bdSnsKey":{},"bdText":"","bdMini":"2","bdMiniList":false,"bdPic":"","bdStyle":" 阅读全文
posted @ 2016-05-13 10:21 Renascence_5 阅读(378) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}$$ $\Large\mathbf{Solution:}$ Let $S$ denote the sum. Then $$\begin{align } S=\sum_{n=1 阅读全文
posted @ 2016-05-12 16:24 Renascence_5 阅读(664) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}$$ where $\widetilde{H_n}$ is the alternating harmonic number. $\Large\mathbf{S 阅读全文
posted @ 2016-05-12 16:09 Renascence_5 阅读(668) 评论(0) 推荐(0)
摘要:$$\sum_{n = 1}^\infty {\frac{1}{{{n^3}}}} \left( {\sum\limits_{k = 1}^n {\frac{{{{\left( { 1} \right)}^{k 1}}}}{k}} } \right) = \frac{7}{4}\zeta \left 阅读全文
posted @ 2016-05-12 15:40 Renascence_5 阅读(669) 评论(0) 推荐(0)
摘要:计算下面两个积分的比值: $$\Large\displaystyle \int_{0}^{1}\frac{1}{\sqrt{1+t^{4}}}\mathrm{d}t~,~\int_{0}^{1}\frac{1}{\sqrt{1 t^{4}}}\mathrm{d}t$$ $\Large\mathbf{ 阅读全文
posted @ 2016-05-11 20:00 Renascence_5 阅读(898) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_{0}^{1}\frac{\ln\left ( 1+x^{2} \right )}{1+x^{2}}\mathrm{d}x$$ $\Large\mathbf{Solution:}$ 方法一: 考虑含参积分 $$\mathcal{I}\left ( 阅读全文
posted @ 2016-05-11 19:52 Renascence_5 阅读(1982) 评论(0) 推荐(1)
摘要:$$\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1 x \right )^{3}}}{\left ( 1+x \right )^{3}}\mathrm{d}x~~,~~\int_{0}^{1}\frac{\sqrt[3]{x\lef 阅读全文
posted @ 2016-05-11 19:33 Renascence_5 阅读(1778) 评论(0) 推荐(0)
摘要:如何计算 $\displaystyle \zeta \left ( 2 \right )=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots =~?$ 这个问题是在1644年由意大利数学家蒙哥利(Pietro Mengoli)提出的,而大数学 阅读全文
posted @ 2016-05-11 16:43 Renascence_5 阅读(1253) 评论(0) 推荐(0)
摘要:1.Irresistible Integrals http://pan.baidu.com/s/1c2z7QWo 2.Inside Interesting Integrals http://pan.baidu.com/s/1jI6Nkf8 window._bd_share_config={"comm 阅读全文
posted @ 2016-05-11 16:19 Renascence_5 阅读(678) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_{0}^{1}x\sqrt{1+x^{3}}\mathrm{d}x$$ $\Large\mathbf{Solution:}$ 易知 $$\int_{0}^{1}x\sqrt{1+x^{3}}\mathrm{d}x=\frac{1}{3}\int_ 阅读全文
posted @ 2016-05-10 20:46 Renascence_5 阅读(2076) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_{0}^{[x]}\left ( t \left [ t \right ] \right )\mathrm{d}t=\frac{[x]}{2}$$ $\Large\mathbf{Proof:}$ 我们来看更一般的形式,令$m=\left \lfl 阅读全文
posted @ 2016-05-10 20:41 Renascence_5 阅读(1223) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_{0}^{1}\left [ \frac{1+\sqrt{1 x}}{x} +\frac{2}{\ln\left ( 1 x \right )}\right ]\mathrm{d}x$$ $\Large\mathbf{Solution:}$ 方法 阅读全文
posted @ 2016-05-10 20:30 Renascence_5 阅读(678) 评论(0) 推荐(0)
摘要:Since the Clausen functions are intimately related to a number of other important special functions, such as Inverse Tangent Integrals, Polylogarithms 阅读全文
posted @ 2016-05-10 19:36 Renascence_5 阅读(754) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^{1} \frac{\arccos^4 \left(x^2\right)}{\sqrt{1 x^2}}\,\mathrm{d}x$$ $\Large\mathbf{Solution:}$ Let $I$ denote the integral 阅读全文
posted @ 2016-05-09 20:29 Renascence_5 阅读(1214) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^1 \dfrac{\operatorname{Li}_2\left(\dfrac{x}{4}\right)}{4 x}\ln\left(\dfrac{1+\sqrt{1 x}}{1 \sqrt{1 x}}\right)\mathrm{d}x= 阅读全文
posted @ 2016-05-09 20:10 Renascence_5 阅读(542) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_{0}^{1}\left \{ \frac{1}{x} \right \}\mathrm{d}x~,~\int_{0}^{1}\left \{ \frac{1}{x} \right \}^{2}\mathrm{d}x~,~\int_{0}^{1} 阅读全文
posted @ 2016-05-09 20:04 Renascence_5 阅读(1363) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^1\frac{\ln^3(1+x)\,\ln^3x}x\mathrm{d}x$$ $\Large\mathbf{Solution:}$ Using the following known results: $$\begin{align } \ 阅读全文
posted @ 2016-05-09 17:16 Renascence_5 阅读(1579) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^1\frac{\ln^3(1+x)\,\ln^2x}x\mathrm{d}x$$ $\Large\mathbf{Solution:}$ I will be using the following results: $$2\sum^\infty 阅读全文
posted @ 2016-05-05 17:11 Renascence_5 阅读(1300) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle {\;}_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{2};1 \right)=\frac{4\mathbf{G}}{\pi}$$ $\Large\mathbf{Proof:}$ Wel 阅读全文
posted @ 2016-05-05 11:09 Renascence_5 阅读(538) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \int_0^\infty \frac{\ln \left(1+\dfrac{\pi^2}{4x} \right)}{e^{\sqrt{x}} 1}\mathrm{d}x$$ $\Large\mathbf{Solution:}$ Step 1 Split 阅读全文
posted @ 2016-05-04 20:08 Renascence_5 阅读(1354) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \sum_{n=1}^\infty\frac{\Gamma\left(n+\dfrac{1}{2}\right)}{(2n+1)^4\,4^n\,n!}$$ $\Large\mathbf{Solution:}$ First, in view of Legr 阅读全文
posted @ 2016-05-04 16:30 Renascence_5 阅读(869) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \sum_{n=1}^\infty ( 1)^n \frac{H_n}{2n+1}=\mathbf{G} \frac{\pi}{2}\ln(2)$$ $\Large\mathbf{Proof:}$ $\Large\mathbf{Method~One:}$ 阅读全文
posted @ 2016-05-04 16:05 Renascence_5 阅读(381) 评论(0) 推荐(0)
摘要:$$\Large\displaystyle \sum_{n=0}^\infty \frac{1}{F_{2n+1}+1}=\frac{\sqrt5}{2}$$ $\Large\mathbf{Proof:}$ Let $\phi=\dfrac{1+\sqrt{5}}{2}$ denote the go 阅读全文
posted @ 2016-05-04 14:35 Renascence_5 阅读(221) 评论(0) 推荐(0)
摘要:$$\Large\int_0^{\large \frac{\pi}{2}} \ln^2\left(\tan\frac{x}{2}\right){ _3F_2}\left(\frac12,1,1;\frac32,\frac32;\sin^2 x \right)\mathrm{d}x = \frac{5 阅读全文
posted @ 2016-05-02 20:52 Renascence_5 阅读(658) 评论(0) 推荐(0)