Codeforces 803F Coprime Subsequences (容斥)
Link: http://codeforces.com/contest/803/problem/F
题意:给n个数字,求有多少个GCD为1的子序列。
题解:容斥!比赛时能写出来真是炒鸡开森啊!
num[i]: 有多少个数字是 i 的倍数。
所有元素都是1的倍数的序列有:$2^n-1$个。先把$2^n-1$设为答案
所有元素都是质数的倍数的序列有:$\sum 2^{num[p_1]} - 1$个,这些序列不存在的,得从答案中减去。
所有元素都是两质数之积的倍数的序列有:$\sum 2^{num[p_1*p_2]} - 1$个,这些序列两次扫黄都在现
场,我们应减一次,但实际减了两次,多减了一次,所以要加回到答案中。
然后考虑,所有元素都是3,4,5......个质数之积的倍数的序列。
依次类推。于是就可以容斥了。
PS: 要先预处理好一个数字,能被拆成几个素数之积。而且同一个素数不能出现两次或以上。
【不优雅の】code:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
typedef long long ll;
const int MAXN = 100000+10;
const int MAXM = 100000+10;
ll prime[MAXN+1];
ll ct[MAXN], sgn[MAXN];
ll n, a[MAXN], bad[MAXN];
void getPrim()
{
memset(sgn, 1, sizeof(sgn));
memset(prime, 0, sizeof(prime));
for(int i=2;i<=MAXN;i++)
{
if(!prime[i]){
prime[++prime[0]] = i;
}
for(int j=1;(j<=prime[0])&&(prime[j]<=(MAXN/i));j++)
{
prime[prime[j]*i] = 1;
if(i%prime[j]==0) break;
}
}
}
void getFactor(ll x)
{
ll cnt = 0, i;
ll tmp = x;
for(i = 1; prime[i] * prime[i] <=tmp ;i++)
{
if(tmp % prime[i] == 0)
{
int c = 0;
while(tmp % prime[i] == 0)
{
c ++;
tmp /= prime[i];
}
if(c >= 2)
{
bad[x] = 1;
return;
}
cnt ++;
}
}
if(tmp!=1)
{
cnt ++;
}
ct[x] = cnt;
}
const ll MOD = 1000000007;
ll mpow(ll a, ll n)
{
ll ret = 1;
while(n)
{
if(n & 1)
{
ret = (ret * a);
ret %= MOD;
}
a = a * a % MOD;
n >>= 1;
}
return ret;
}
ll num[MAXN];
int main()
{
getPrim();
for(int i=1;i<MAXN;i++)
{
getFactor(i);
}
scanf("%lld", &n);
for(int i=1;i<=n;i++)
{
scanf("%lld", &a[i]);
for(ll j=1;j*j<=a[i];j++)
{
if(a[i]%j==0)
{
if(j*j!=a[i]) num[a[i]/j] ++;
num[j] ++;
}
}
}
ll ans = 0;
for(int i=2;i<MAXN;i++)
{
if(num[i]>0 && ct[i]>0 && !bad[i])
{
//cout << i << " " << num[i] << " " << ct[i] << endl;
ans += (ll)( (ct[i]%2==1)?(1):(-1) ) * (mpow(2, num[i])-1);
ans %= MOD;
}
}
ans = (mpow(2, n) - ans + MOD) % MOD;
cout << (ans-1+MOD)%MOD << endl;
}
官方题解提到了莫比乌斯函数,最终答案的表示为$\sum\limits_{i=1}^{1e5} µ(i)(2^{num[i]}-1)$
套了下KuangBin巨巨的模板。重写了遍。
#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
const int NICO = 100000+2;
const int MOD = 1000000000 + 7;
LL n, a[NICO], cnt[NICO], po[NICO], mo[NICO];
bool chk[NICO];int prime[NICO];
void init()
{
po[0] = 1, mo[1] = 1;
for(int i=1;i<NICO;i++) po[i] = 2*po[i-1]%MOD;
memset(chk, 0, sizeof(chk));
int tot = 0;
for(int i=2;i<NICO;i++)
{
if(!chk[i])
{
prime[tot++] = i;
mo[i] = -1;
}
for(int j=0;j<tot;j++)
{
if(i*prime[j]>=NICO) break;
chk[i*prime[j]] = 1;
if(i%prime[j] == 0)
{
mo[i*prime[j]] = 0;
break;
} else {
mo[i*prime[j]] = -mo[i];
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j*j<=a[i];j++)
{
if(a[i]%j) continue;
if(j*j != a[i]) cnt[a[i]/j] ++;
cnt[j] ++;
}
}
}
int main()
{
scanf("%lld", &n);
for(int i=1;i<=n;i++) scanf("%lld", &a[i]);
LL ans = 0; init();
for(int i=1;i<NICO;i++)
{
ans = (ans + mo[i] * (po[cnt[i]]-1) )% MOD;
}
cout << (ans+1000LL*MOD)%MOD << endl;
}

浙公网安备 33010602011771号