4.3勒让德方程正常点附近邻域上的求解
在 z = 0 为中心的区域上求解勒让德方程
\[(1 - z^2)u''(z) - 2zu'(z) + l(l + 1)u(z) = 0
\]
化为标准形式 \(u''(z) - \frac{2z}{1 - z^2}u'(z) + \frac{l(l+1)}{1 - z^2}u(z) = 0\)
\[p(z) = -\frac{2z}{1 - z^2}, \quad q(z) = \frac{l(l+1)}{1 - z^2}
\]
\(z_0 = 0\) ———— 方程的正常点
\(z_1 = 1, \quad z_2 = -1\) ——— 方程的孤立奇点
\(|z| < 1\) ———— 相应的解析圆域
求解:
用$$u(z) = \sum_{k=0}^{\infty} a_k z^k$$展开
可得到$$a_{k+2} = \frac{k(k+1) - l(l+1)}{(k+1)(k+2)} a_k = \frac{(k-l)(k+l+1)}{(k+1)(k+2)} a_k$$
\[u(z) = a_0 u_0(z) + a_1 u_1(z)
\]
具体过程见附录
附录:
\[u(z) = \sum_{k=0}^{\infty} a_k z^k \rightarrow (1 - z^2)u''(z) - 2zu'(z) + l(l + 1)u(z) = 0
\]
\[\sum_{k=0}^{\infty} k(k - 1)a_k z^{k-2} - \sum_{k=0}^{\infty} k(k - 1)a_k z^k - 2\sum_{k=0}^{\infty} ka_k z^k + l(l + 1) \sum_{k=0}^{\infty} a_k z^k = 0
\]
\[\sum_{k=0}^{\infty} (k+1)(k+2)a_{k+2} z^k - \sum_{k=0}^{\infty} k(k-1)a_k z^k - 2\sum_{k=0}^{\infty} ka_k z^k + l(l + 1) \sum_{k=0}^{\infty} a_k z^k = 0
\]
由各幂次项系数必为 0,最终就得到
\[a_{k+2} = \frac{k(k+1) - l(l+1)}{(k+1)(k+2)} a_k
\]
化简使其更容易递推:$$= \frac{(k-l)(k+l+1)}{(k+1)(k+2)} a_k$$

浙公网安备 33010602011771号