//add,懒标记,给以当前节点为根的子树中的每一个点加上add(不包含根节点)
//
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010;
int n, m;
int w[N];
struct Node
{
int l, r;
//总和
//如果只考虑当前节点及子节点上的标记,当前区间和是多少 ,没考虑所有祖先节点上的标记
LL sum;
//懒标记
//给当前区间的所有儿子加上add
LL add;
}tr[N * 4];
//用子节点的信息来计算父节点的信息
void pushup(int u)
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void pushdown(int u)
{
Node &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
//如果当前根节点有标记,往下传,还要清空
if (root.add)
{
left.add += root.add;
left.sum += (LL)(left.r - left.l + 1) * root.add;
right.add += root.add;
right.sum += (LL)(right.r - right.l + 1) * root.add;
root.add = 0;
}
}
void build(int u, int l, int r)
{
if (l == r)
tr[u] = {l, r, w[r], 0};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
void modify(int u, int l, int r, int d)
{
if (tr[u].l >= l && tr[u].r <= r)
{
//总和
tr[u].sum += (LL)(tr[u].r - tr[u].l + 1) * d;
//懒标记
tr[u].add += d;
}
// 区间太大,一定要分裂
else
{
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid)
modify(u << 1, l, r, d);
if (r > mid)
modify(u << 1 | 1, l, r, d);
//当前区间和发生变化,需要向上传
pushup(u);
}
}
LL query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r)
return tr[u].sum;
//查询子区间
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
LL sum = 0;
if (l <= mid)
sum = query(u << 1, l, r);
if (r > mid)
sum += query(u << 1 | 1, l, r);
return sum;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
scanf("%d", &w[i]);
build(1, 1, n);
char op[2];
int l, r, d;
while (m -- )
{
scanf("%s%d%d", op, &l, &r);
if (*op == 'C')
{
scanf("%d", &d);
modify(1, l, r, d);
}
else printf("%lld\n", query(1, l, r));
}
return 0;
}